PLANNING SUBMISSION

Engineering Infrastructure Report for 268 dwellings for Castle Rock Homes (Midleton) Ltd

At

Broomfield West, Midleton, Co Cork.

Date: 03.05.2023

Revision Record

Issue No	Revision	Report Date	Issue Date	Prepared by	Checked by
1	Α	20-04-2023	03-05-2023	Brian O'Kennedy	GF
2	В	09-05-2023	09-05-2023	вок	GF
3	С	22-09-2023	22-09-2023	вок	GF
4	D	06-10-2023	18-10-2023	вок	GF
5	E	27-02-2023	01-03-2023	вок	GF

Table of Contents		Page
Section 1 Section 2 Section 3 Section 4 Section 5 Section 6	Introduction Surface Water Design Foul Water Design Water Supply Drainage Impact Assessment Flood Risk Assessment	2 3 7 9 10 26
Appendix 'A' Appendix 'B' Appendix 'C' Appendix 'D' Appendix 'E' Appendix 'F' Appendix 'G' Appendix 'H'	Stormwater Sewer Design Output Receiving SW Network CCTV Sur- Receiving Network Capacity Calc Greenfield Runoff rate Calculatio Infiltration Rate Tests Foul Water Sewer Design Output Irish Water Confirmation of Feas SuDS Checklists	vey ulations n

1. Introduction

This report is prepared in support of a planning application for the development of 268 houses and apartments on a site of net area 7.95 hectares at Broomfield West, Midleton, Co Cork. The report outlines the proposed means of servicing the development with roads, surface water sewers, foul water sewers, mains water supply, and storm water attenuation. The report also includes a Drainage Impact Assessment and a Flood Risk Assessment of the proposed development. Separate technical reports for Traffic Management, Environmental Impact, Landscaping Design and Lighting Design have been prepared by other parties of the design team and are included separately with the planning application. This report should be read in conjunction with the full set of engineering drawings submitted with the application, along with the design team documents.

The report was originally issued for planning submission as revision D. In response to a further information request issued on 17-01-2024 the report was revised and updated to revision E.

2. Surface Water System - Design & Details

The surface water sewer system serving the development will consist of a network of surface water drains operated by gravity flow. The sewers will discharge westward towards the existing L-7360 public roadway. This roadway is currently being upgraded as part of the Park Hill View Estate Ltd development to the west of this roadway (PP Ref: 18/7236). The public road upgrade includes installing a new surface water sewer to serve the Park Hill View Estate Ltd housing development site. The surface water sewers serving the subject proposed development will connect into this newly-laid storm sewer. These sewers have been increased in size to accommodate the proposed extra discharge from the subject development.

SuDS measures have been incorporated on the surface water system to intercept water at source and reduce the run-off from the site (see section 3.0 below for separate Drainage Impact Assessment). A series of attenuation tanks will be installed to limit the run off from the site to the original greenfield run off level.

The sizing of the pipework collection system has been carried out using Causeway software. Design calculations and output sheets are attached in Appendix A. Details of the surface water sewer networks including connection points and discharge locations are shown on Drawings 22/6372-P-1321 + 1322 + 1324

2.1 Receiving Network

The surface water outfall pipe from the development will connect to an existing manhole at the junction of the L-7360 and the Broomfield Court spine road.

This manhole is part of an existing surface water network which runs from this connection point through the existing Brookdale and Avoncore estates, crossing the R626 public roadway and discharging into the Owenacurra River. The pipework is sized at 450mm \emptyset at the connection point and it increases as it runs downstream to 600mm \emptyset . The route of this receiving network and the discharge location to the Owenacurra River are shown on Drawing 22/6372-P-1324

It is noted that Avoncore is an older estate with a separate combined sewer system. There is no interconnection between this combined sewer and the surface water receiving network. The receiving network does not receive surface water from individual dwellings at this location.

The existing receiving network from the connection point to the river outfall has been CCTV surveyed in April 2019 as part of the Park Hill View Estate Ltd

development permission. (PP Ref: 18/7236 - RFI submission). The CCTV survey shows the receiving network to be a modern concrete pipe and manhole network. It is in good condition and suitable for connecting into. Minor debris and pipe intrusions into the pipework were remedied post survey. A copy of this CCTV survey is attached in Appendix 'B'

An assessment of the capacity of the receiving network has been made. Catchment areas for the network have been calculated and sizes and invert levels of the pipes have been assessed. These capacity calculations are attached in Appendix 'C'. Contributing volumes from existing properties, public roads, the under-construction Park Hill View Estate Ltd Development and the Midleton Water Treatment Plant discharge volumes have been taken into account in these calculations. The catchment areas for this receiving network is shown in Figure 2.1

Figure 2.1 SW Receiving Network Catchment Area

The receiving network takes runoff from the Hollyridge, Broomfield Ridge, Holly Grove, Holly Court, Broomfield Court and Ivy Court areas east of the L-7360 roadway along with the Brookdale and Abbeylands developments west of the L-7360

Irish Water have indicated that the outflow from the Midleton waterworks is 107 m³ per day. This is broken into 57 m³ of sludge bleeds and 50 m³ of backwash. The duration of the sludge bleeds is 1 min every 10 min or 2.4hrs (144 min) per day. Filter backwash is understood to be spread over the duration of a day. Taking a worst case scenario that the filter backwash also occurs over a 2.4 hrs duration then the calculated peak flow from the waterworks is 12.38 l/sec.

Added to this, is the calculated discharge from the Park Hill Development plus the run-off from the upgraded L-7360 public roadway of 4.77 l/sec. Hardstanding run-off from the catchments areas and the greenfield run off rate (see Section 2.2 hereunder) from the subject proposed development are also included.

The overall runoff volume from the existing and proposed development is 53.0 l/sec. This value has been used for the receiving network capacity calculations.

Causeway design printouts for the existing network capacity are attached in Appendix C. It will be seen that the flow capacity for the receiving network is at 57.3% capacity in the worst case scenario between manholes S3 to S4 for a 60 min duration winter event using a 5 year return period. Therefore, the receiving network has appropriate capacity to accept the calculated additional surface water discharge from the proposed development.

2.2 Greenfield Run-off Rate

The greenfield runoff rate has been calculated using the HR Wallingford online Greenfield Runoff Estimation Tool. See report attached in Appendix D. The online tool has calculated a greenfield runoff rate of 24.35 l/sec.

Values input in the calculation are as follows:

Area of Site (ha) = 7.95 SAAR from Met Eireann published figures for this location (mm) = 1091 Soil type = 2 SPR = 0.3

The surface water design will limit runoff volumes by including a network of pipework with SuDS features and attenuation storage structures. This is designed to limit the effect of urbanisation and replicating the runoff characteristics of a greenfield site.

2.3 Attenuation details

Underground Storage Tanks are favoured over proprietary cellular structures on account of the high soil infiltration levels and down-slope existing housing development and infrastructure. The surface water drainage network is shown on Drawings 22/6372-P-1303 +1321 + 1322. On account of the topography and the location of the Midleton Water Treatment Plant, the surface water network serving the site is divided up into separate sections with two separate attenuation tanks provided for adequate protection against downstream river flooding.

The tanks will be constructed of cast-in-situ reinforced concrete and fully sealed. Details of the attenuation tank design is shown on Drawings 22/6372-P-1323.

Attenuation tank volume calculations for the 2 attenuation tanks are shown in the Storm Network 1 and Storm Network 2 calculations in Appendix A

3.0 Foul Sewer System – Design & Details

The foul sewer system serving the development will operate by gravity flow. The sewers will discharge westward towards the existing L-7360 public roadway. This roadway is currently being upgraded as part of the Park Hill View Estate Ltd development to the west of this roadway (PP Ref:18/7236). This road upgrade includes installing new Surface and Foul Water sewers to serve the Park Hill View Estate Ltd development site. It is proposed to connect into these newly-laid sewers. These sewers have been upgraded to accommodate the proposed extra discharge from the subject development. Please see Drawings 22/6372-P-1301 + 1302

All sewers will be designed and installed in accordance with Irish Water Code of Practice for Wastewater infrastructure Rev July 2020.

3.1 Flow Rates

The development complies with Sewer Size/Gradients for multiple Properties. Based on this, flow rates are taken as 450l/house/day as per Irish Water guidelines for Housing Developments. The proposed development will produce the following volume:

$$\frac{268 \times 450}{24 \times 60 \times 60}$$
 = 1.40 l/s

Population of 268 x 2.7 = 724 persons Peaking factor for population of 724 = 6

6 x 1.41 l/s = 8.44 l/s design volume

Design Construction and output sheets from Causeway software for the foul sewer are included in Appendix 'F'

Design Settings	Value
Flow per dwelling per day (I/day)	450
Persons per House	2.7
Peaking Factor	6
Minimum backdrop height (m)	0.2
Min velocity (m/s)	0.89

Design Settings Used in the Causeway model

3.2 Pre Connection Query - Uisce Eireann

A COF from Uisce Eireann has been received and the Uisce Eireann response indicates that a wastewater connection is feasible subject to upgrades. A copy of the Irish Water response is included in Appendix 'G' of this report.

4.0 Water Supply – Design & Details

Irish water have an existing 12" Ductile Iron watermain running through the south-west corner of the site. It will be necessary to relocate this main to suit the proposed arrangement of roads and houses on the site, subject to agreement with Irish Water.

4.1Pre-Connection query

A pre-connection query was lodged with Irish Water. The Irish Water response confirms that a water connection is feasible without infrastructure upgrade by them.

The requirement to potentially divert the 12" Ductile Iron watermain is noted on the Irish Water Response. A copy of this confirmation of feasibility response is attached in Appendix G

4.2 Proposed Network

It is proposed to serve the development by an internal watermain network of 150Ø spine and 100Ø branch mains. All watermain installation details will be in accordance with Irish Water, Water Infrastructure Standard Details – July 2020.

Fire hydrants will be installed such that all dwellings are within 45.0m of a hydrant.

A bulk water meter will be installed at the principal watermain connection location. All dwellings will have individual meters.

Details of the water supply network are shown on Drawings 22/6372-P-1331 +1332

5.0 Drainage Impact Assessment

A Drainage Impact Assessment has been carried out in accordance with the requirements of County Development Plan, Advice Note No 1, Surface Water Management, (Dec 2022).

The Drainage Impact Assessment sets out how Sustainable Drainage Systems (SuDS) have been incorporated into the surface water design to manage surface water within and adjacent to the site.

5.1 SuDS Statement

The SuDS design for this development has been carried out with reference to:

- Cork County Development Plan 2022 objectives,
- The Greater Dublin Strategic Drainage Study Vol 2 (GDSDS) and
- The SuDS Manual CIRIA Report C753.

The surface water management plan for the site seeks to maximise the retention of surface water runoff from all hardstanding areas. Where feasible, SuDS measure have been incorporated into green spaces to intercept and minimise run-off.

The greenfield runoff rate from the development has been calculated (See section **2.2** above) and discharge to the public surface water sewer system has been kept below this figure.

The following individual SuDS measures have been considered appropriate for this particular development and will be incorporated:

	SuDS Measure	To be used on site	Area of feature	Attenuation Volume of Feature
1	Drained	Yes	9no Locations:	See Section 5.11.1
	Swale		Overall length	
			325m	
2	Filter	Yes	4no locations:	See Section 5.11.2
	Drains		Overall length	
			230 lin m	
3	Permeable	Yes – permeable	2.38Ha	See Section 5.11.3
	Paving	paving to be		
		incorporated		

4	Petrol, Oil	Yes – larger	All estate roads	Not applicable
	Interceptor	volume of water		
	Grit Trap	from estate roads		
		will be diverted		
5	Attenuation	Yes – 2 no	Serves full	220 cubic meters
	Tank	attenuation tanks	development	
		provided to cater		
		for separate		
		areas of the site		

5.2 SuDS Selection Criteria

The SuDS design reflects the layout and topography of the development site:

- Permeable paving has been incorporated in the external hardstanding of all dwellings. Soakaways have also been incorporated to accommodate roof water run off – both of these measures will intercept surface water at source.
- Permeable paving has been incorporated into each of the 3 courtyard areas comprising 650 sqm each, being a total of 1950 sqm.
- Filter drains have been incorporated in select areas to address the potential
 for rainwater exceedance scenario. The East West retaining wall running
 across the centre of the site has a large filter drain at the rear of the wall with
 base level drainage incorporated. This addresses the risk of rainwater
 accumulation at the feature across the centre of the site.
- Swales have been incorporated where gradients allow. The swales will be appropriately planted to enhance biodiversity gains. The swales will serve specific areas of road water run off by drainage from road gullies. These areas will deliver a high level of water treatment.
- Due to the sloping nature of the site the incorporation of Detention Basins and/or Retention Basins is not feasible.

The infiltration capacity of the soils at the site is good. A series of soakaway tests were conducted on site to determine infiltration rates. These ranged from 2.8×10^5 m/s to 30.06×10^5 m/s indicative of moderate to high infiltration capacity.

Infiltration Rate Testing Results are attached in Appendix 'E'. These tests have been conducted as per the testing requirement laid down in BRE 365.

See Drawings 22/6372-P-1321 + 1322 for layout of SuDS measures incorporated into the development

5.3 SuDS Design Criteria

The key principles for consideration in SuDS design are:

- 1. Water Quality
- 2. Water Quantity
- 3. Amenity
- 4. Biodiversity

The following table shows how these criteria have been considered:

Criteria	Component	Description
Water Quantity	Collection of Run-off	Individual dwelling downpipes to soakaway. Individual Dwelling permeable paving hardstanding to intercept direct rainfall to common parking areas.
	Interception	Infiltration of >5mm for all surfaces Filter drains at specific locations
	Storage	Soakaway Pavement sub-base Swales Attenuation Tanks
	Exceedance	Raised road kerbs & crossings and retaining walls allowing extra storage
Water Quality	Ground water discharge	Residential Parking and Roads: Swales and Filter drains to act as interception and treatment
Amenity	Swales	Water Supply to support vegetation and biodiversity habitat
Biodiversity	Landscaping + Swales	Enhance tree numbers – See Landscape Strategy Document

5.4 Layout of Proposed Network

The surface water network is laid out to provide gravity falls without the necessity for pumping. The network runs from East to West and discharges at two separate locations to the existing L-7360 public road which runs along the west and north boundaries of the development. See Drawings 22/6372-P-1321 + 1322 for the

proposed layout. A new 300mmØ S.W. sewer is currently being laid in the L-7360 public roadway as part of a recently approved housing development (PP Ref: 18/7236) by Park Hill View Estate Ltd. This pipe was sized at 225mmØ on the approved planning drawings and is being upgraded to a 300mmØ pipe to cater for the additional run off from the subject development. The surface water design calculations for the development also confirm the sizing for this pipework

5.5 Interception Storage

River Water Quality Protection is assisted by interception of rainfall events to limit rapid run-off to receiving waters as per GDSDS objectives.

GDSDS lists an objective of no run-off to pass directly to the river for rainfall events of 5mm and up to 10mm if possible.

Infiltration techniques are incorporated in the subject development as follows:

- i. Use of permeable paving to all individual properties.
- ii. Use of permeable paving to courtyard common parking areas
- iii. Use of swales and filter drains to receive run-off from elements of the estate roads.

Due to the site topography and subsequent workable estate layout, the use of Retention Ponds, Retention Basins, and Wetlands for infiltration and interception storage are not feasible at this development location, however the significant use of the above referenced filtration systems offsets this.

5.6 Attenuation Storage

Underground Storage Tanks are favoured over proprietary cellular structures on account of high soil infiltration rates and down-slope existing housing development and infrastructure. On account of the topography and an area of sloping ground just north of the Midleton Water Treatment Plant, two separate attenuation tanks are required, to provide adequate protection against downstream river flooding. These are shown on Drawings 22/6372-P-1321 + 1322

In accordance with GDSDS the Greenfield run-off rate (QBAR) is used to calculate attenuation storage control. Attenuation tank capacity calculations for the two attenuation tanks are shown in the Storm Network 1 and Storm Network 2 calculations in Appendix 'A'

5.7 Climate Change

The SuDS design has been carried out taking into account climate change factors as outlined in the GDSDS document a follows:

Category	Characteristics	
River Flows	20% Increase in flows for all return	
	periods up to 100 years.	
Rainfall	10% increase in depth	

5.8 Existing Site Conditions

The development site is relatively flat at the higher northern end. It slopes from this high level in southern, south-western and south-eastern directions. Approx 25% of the site at the upper areas is relatively flat and has lesser falls of 1:15 (7%). The remaining 75% of the site has moderate falls of between 1:8 (12%) and 1:9 (11%).

The site is currently laid out in pasture with grazing sheep. The eastern boundary has a small mature ditch bordering further grasslands. The northern, north-western and western boundaries are a mature ditch bounding a public roadway - the L-7360. The southern boundary is adjoining a recently built housing development and has a palisade fence boundary. The site surrounds the Midleton Water Treatment Plant (WTP) on three sides. The WTP is accessed off the aforementioned public roadway. The boundary around the WTP is a mature ditch with mature trees. A small mature ditch and mound runs east-west across the site separating the lower and upper areas.

There are no existing drainage features evident on the lands. No water run-off channels are evident on any part of the lands. Rock is close to the surface at the upper flatter area where a couple of local rocky outcrops are visible.

Overland flow paths which run perpendicular to the contours are shown in Figure 5.1. — overlain on the proposed development. In most case these flow paths are intercepted by estate roads. Where estate roads run in the same direction as the flow paths, raised kerbing at the ends of these will prevent flooding of properties in an extreme rainfall event scenario. Where rainfall is at risk of entering a cul-de-sac area, a raised pedestrian crossing will be constructed at the entrance to this area to prevent flooding of the area. All potential collection areas of exceedance rainfall will be fitted with pairs of road gullies or filter drains to provide extra run-off capacity.

At the centre east-west roadway – where potential rainfall exceedance flow meets the east-west retaining wall there are no road routes downhill from here for exceedance flow to follow. The retaining wall will project 500mm above the ground level to prevent overflow above the wall and to act as a water retention area. The wall construction incorporates a 300mm wide filtration layer directly behind the wall face which extends the full heights of the wall and which has a perforated filter drain at its base, connected to the SW drainage system.

Figure 5.1 Overland Flow Paths

5.9 Existing Services

There are both overground and underground existing utilities on the site. A 38kV ESB overhead cable runs north-south to the east side of the development. This has been partly placed underground in ducting, with ESB approval, in the existing development to the south. It is proposed to continue this ducting this as far as the north east corner of the site where a new mast will be erected. This will minimise areas sterilised due to overhead lines. A 10kV line runs through the site providing power to the Water Treatment Plant (WTP). Here again the southern section of this overhead line has already been placed in ducting underground. It is intended continuing this ducting as far as the public roadway north of the WTP.

There is one existing watermain pipe running through the site directly south of the W.T.P. This has been shown diverted around the proposed new estate roads. Irish Water are aware of this diversion requirement and refer to same on their Confirmation of Feasibility letter.

These diversions are shown on Drawing Ref 22-6372-PL05- 1341 Existing Services.

5.10 Rainfall Event Stormwater Design

Computer modelling for a variety of rainfall events and return periods has been carried out using Causeway software to enable confirmation of pipework sizing, storage volumes and outfall discharge rates. This modelling outputs are attached in Appendix 'A'

5.11 Detailed design assessment

5.11.1. Swales

A series of dry swales will be formed to provide interception and filtration of run off from adjacent hard-landscape areas. To the north and south of the development site a series of interconnected swales take run-off from adjacent internal road elements and provides a high-level of treatment of the runoff water. To the centre of the side a swale has been incorporated into the main green area (open space area 6) to intercept run-off from the green area itself. A further swale has been incorporated in the SW corner of the site – between the proposed southernmost estate road and the adjacent existing estates to the south.

The swales have a design filtration width of 2.0m – this may be narrowed locally to accommodate site constraints. The swales will be fitted with a perforated under-drain as longitudinal falls exceed 1.5%. They are situated in green areas and in the case of the northern and southern swales are broken into interconnected elements to reflect individual green areas.

The swales will have maximum side slopes of 1:3 - or shallower where space allows. The filter zone is covered with a planted filter bed of prepared soil to allow filtration to the filter medium and underdrain. A 600 mm depth of filter medium will be installed above the underdrain. See swale make-up detail on drawing P-1321.

The perforated underdrain will be re-connected to the surface water drainage system on the downstream end to accommodate peak-flow conveyance during a large volume event.

Site investigation shows no high level water-table and lining is not required.

Northern Swale (south of public road L-7360) – See drawing P-1322 This is made up of 4 interconnected sections. The swale is 110m long with a filter drain width of 2.0m - see drawing detail for typical make up. The swale drains an adjacent estate road area of 1,437 sqm. It has a longitudinal fall of 1:30 (0.033 or 3.3%fall)

Run Off Rates

Run off area = 1,437sqm

Runoff factor = 0.9 (impervious road and path areas)

Rainfall and runoff volumes:

Event	Duration	Rainfall Intensity	Runoff Rates
	min	mm/hr	m³/sec
			(A x 0.9 x i)
1:1 year	15	28	0.012
1:10 year	15	57.2	0.020
1:30 year	15	78	0.028
1:100 year	15	107.2	0.040

Flow Rate from Swale to to Filter Drain

Permeability of Filter aggregate (k) = 0.0005m/s Filter drain area (A) $2.0 \times 110 = 220$ sqm Capacity (Q) = Ak = $220 \times 0.0005 = 0.11$ m³/sec

This is above the 1:100 year event run off volume which is acceptable

Check capacity of swale for 30 & 100 year events

Use Mannings equation $Q = A(R)^2/3(S)^1/2/n$

For high flows use average Manning's n = 0.15

A = Cross sectional area

R = hydraulic radius (A/P) P = wetted perimeter

S = slope of channel = 0.033

This gives the following depth:flow relationship results

d (mm)	V (m/s)	Q (m³/s)
50	0.165	0.041
100	0.261	0.131
150	0.342	0.257
200	0.415	0.415
250	0.481	0.601
300	0.543	0.815
350	0.602	1.053
400	0.658	1.316
450	0.712	1.601
500	0.763	1.908
550	0.813	2.237

The 30 year flow rate has velocity below 1.5m/sec at a depth of approximately 100mm which is acceptable

The 100 year flow rate has a velocity below 1.5m/sec which is an acceptable non-erosive velocity.

Southern Swale – (Between lower east-west estate road and Blossomhill development to the south)

This is made up of 4 interconnected sections. The swale is 152m long with a filter drain width of 2.0m - see drawing detail for typical make up. The swale drains an adjacent estate road area of 2,180 sqm. It has a longitudinal fall of 1:40 (0.025 or 2.5% fall)

Run Off Rates

Run off area = 2,180sqm

Runoff factor = 0.9 (impervious road and path areas)

Rainfall and runoff volumes:

Event	Duration	Rainfall Intensity	Runoff Rates
	min	mm/hr	m³/sec
			=A x 0.9 x i
1:1 year	15	28	0.015
1:10 year	15	57.2	0.031
1:30 year	15	78	0.042
1:100 year	15	107.2	0.058

Flow Rate to Filter Drain

Permeability of Filter aggregate (k) = 0.0005m/s

Filter drain area (A) $2.0 \times 152 = 304$ sqm

Capacity (Q) = $Ak = 304 \times 0.0005 = 0.152 \text{ m}^3/\text{sec}$

This is greater than the 1:100 year event run off volume which is acceptable

Check capacity of swale for 30 & 100 year events

Use Manning's equation $Q = A(R)^2/3(S)^1/2 / n$

For high flows use average Manning's n = 0.15

A = Cross sectional area

R = hydraulic radius (A/P) P = wetted perimeter

S = slope of channel = 0.025

This gives the following depth:flow relationship results

d (mm)	V (m/s)	Q (m³/s)
50	0.143	0.036
100	0.227	0.114
150	0.298	0.223
200	0.361	0.361
250	0.419	0.523
300	0.473	0.709
350	0.524	0.917
400	0.573	1.145
450	0.619	1.393
500	0.664	1.661
550	0.708	1.947

The 30 year flow rate has velocity below 1.5m/sec at a depth of approximately 100mm which is acceptable

The 100 year flow rate has a velocity below 1.5m/sec which is an acceptable non erosive velocity.

South West Swale - See drawing P-1322

The swale is 46m long with a filter drain width of 2.0m - see drawing detail for typical make up. The swale drains an adjacent estate road area of 448 sqm. It has a longitudinal fall of 1:30 (0.033 or 3.3% fall)

Run Off Rates

Run off area = 448sqm

Runoff factor = 0.9 (impervious road and path areas)

Rainfall and runoff volumes:

Event	Duration	Rainfall Intensity	Runoff Rates
	min	mm/hr	m³/sec
			=A x 0.9 x i
1:1 year	15	28	0.003
1:10 year	15	57.2	0.006
1:30 year	15	78	0.009
1:100 year	15	107.2	0.012

Flow Rate from Swale to Filter Drain

Permeability of Filter aggregate (k) = 0.0005m/s

Filter drain area (A) $2.0 \times 46 = 92 \text{sqm}$

Capacity (Q) = $Ak = 92 \times 0.0005 = 0.046 \text{m}^3/\text{sec}$

This is greater than the 1:100 year event run off volume which is acceptable

Check capacity of swale for 30 & 100 year events

Use Manning's equation $Q = A(R)^2/3(S)^1/2/n$

For high flows use average Manning's n = 0.15

A = Cross sectional area

R = hydraulic radius (A/P) P = wetted perimeter

S = slope of channel = 0.033

This gives t	he following	denth:flow	relationship	results
TITIO SIVES L		acpuilion	Cidtionsinp	i Courto

d (mm)	V (m/s)	Q (m³/s)
50	0.165	0.041
100	0.261	0.131
150	0.342	0.257
200	0.415	0.415
250	0.481	0.601
300	0.543	0.815
350	0.602	1.053
400	0.658	1.316
450	0.712	1.601
500	0.763	1.908
550	0.813	2.237

The 30 year flow rate has velocity below 1.5m/sec at a depth of approximately 100mm which is acceptable

The 100 year flow rate has a velocity below 1.5m/sec which is an acceptable non erosive velocity.

Open space green area swale – (Open Space Area 6) See drawing P-1322 The swale is 17m long with a filter drain width of 2.0m - see drawing detail for typical make up. The swale drains an uphill grasses open space area of 630 sqm. It has a minimal longitudinal fall of 1:100 (0.01 or 1%fall)

Run Off Rates

Run off area = 630sqm

Runoff factor = 0.35 (conservative figure for sloping ground)

Rainfall and runoff volumes:

Event	Duration	Rainfall Intensity	Runoff Rates
	min	mm/hr	m³/sec
			= A x 0.9 x i
1:1 year	15	28	0.002
1:10 year	15	57.2	0.004
1:30 year	15	78	0.005
1:100 year	15	107.2	0.007

Flow Rate from Swale to Filter Drain

Permeability of Filter aggregate (k) = 0.0005m/s Filter drain area (A) $2.0 \times 17 = 34$ sqm Capacity (Q) = Ak = $34 \times 0.0005 = 0.017$ m³/sec This is greater than the 1:100 year event run off volume which is acceptable

Run off volumes are small and the swale make up coupled with high percolation rates for the subsoil will adequately handle run off.

5.11.2. Filter Drains

Filter drains have been incorporated to provide a backup measures for exceedance events and also to accommodate local run-off. See filter drain detail on drawing P-1321

Filter drains are installed at the three courtyard areas which are fully served by permeable paving. They are located on the lower end of the courtyard areas and provide alternative drainage and to prevent any excess ponding which may affect the lower dwellings. These act as a failsafe mechanism in the event of lack of maintenance of the permeable paving areas. The filter drains have perforated pipework with an overflow connection to the adjacent SW system to accommodate peak-flow conveyance during a large volume (exceedance) event. This is situated 1.0m above the invert of the drain invert to enable water entering the drain in a normal rainfall scenario to infiltrate to the surrounding ground.

The filter drains will be covered by a sacrificial layer of single-sized stone laid over geotextile wrapping the file aggregate. This layer will trap silt and can be replaced if required.

The main retaining wall running east-west across the centre of the site has a 300mm wide filter drain which is constructed integral with the wall facing - directly behind the wall face. See Type 4 retaining wall detail on drawing P-1110. This filter drain runs from the toe of this wall to the surface at the upper level. It has a 150mm diameter perforated drain pipe at the toe which allows infiltration into the surrounding subsoil and will also act as a conduit to the SW system in the event of an exceedance event.

5.11.2.1 Courtyard Filter Drains

The filter drains are 20m long each with a depth of 2.0m and a width of 1.0m see drawing detail for typical make up. The filter drain design will be checked to take drainage from the adjacent courtyard area of 650 sqm. It will be constructed with a longitudinal fall of 1:100 (0.01 or 1% fall)

Run Off Rates

Run off area = 650 sqm

Runoff factor = 0.75 (permeable paving courtyard areas – assume scenario where filter drain acts as failsafe for permeable paving)

Rainfall and runoff volumes:

Event	Duration	Rainfall Intensity	Runoff Rates
	min	mm/hr	m³/sec
			= A x 0.75 x i
1:1 year	15	28	0.004
1:10 year	15	57.2	0.008
1:30 year	15	78	0.011
1:100 year	15	107.2	0.015

Check rate of flow through filter media to base of filter drain using Darcy's Law formulae:

Q = Aki

Where: $Q = \text{flow capacity of filter media (m}^3/\text{s})$

 $A = \text{horizontal area of filter drain x height (m}^2)$

k = coefficient of permeability of filter media (m/s) Assume 0.0005 i = hydraulic gradient (generally taken as 1 for vertical flow over short distance)

Giving $Q = 20 \times 1 \times 0.0005 \times 1 = 0.01 \text{ m}^3/\text{sec}$ This capacity is similar to the 1:100 year event which is acceptable.

5.11.3. Permeable Paving

A permeable paving system is proposed for individual dwelling driveways. This system will also be used for the three courtyard areas. The proposed system is designed as an infiltration system with infiltration direct into the

subsoils. The system has a 350mm thick graded sub-base layer which provides high levels of storage capacity prior to subsoil percolation. The Roadstone Aquaflow system is shown in the figure 5.1 below – this system when used with the appropriate geotextile layers, where required, provides an excellent structural base for heavy loads, HGV's etc. The geotextile layers and the sub-base materials provide cleaning and filtering of the run-off water

Figure 5.1 Infiltration permeable paving system

Check design suitability for the courtyard areas:

Check for maximum depth of water h_{max} for plane infiltration systems:

hmax = maximum head of water above base of infiltration component

 $h_{max} = [D(Ri-q)] / n where$

R = ratio of drained area to infiltration area = 650/650 = 1

q = infiltration coefficient form percolation test adjusted by appropriate factor of safety:

As per Table 25.2 of CIRIA SuDS manual chose maximum factor of 10 as failure could lead to damage of building. Thus $q = (2.8 \times 10^{-5})/10 \text{ m/s}$ See percolation test results Appendix E (**note** lowest percolation test result obtained is being used for conservative design). Thus q = 0.01008 m/hr

i, D = intensity and duration of rainfall events m/hr and hr. Chose a check on both 30 year and 100 year events where D = 15min (0.25 hr)

Ab = base area of filtration system = 650 sqm

Ad = area to be drained = 650 sqmn = porosity of filter material. Use figure of 0.35 for uniform gravel

Then for 30 year return period with i = 0.078 m/hr

Then hmax

= $[0.25(1 \times 0.078 - 0.01008)]/0.35 = 0.048$ m or 48mm This is satisfactory where we have a sub base filter layer of 350mm

For a 100 year return period with i = 0.107 m/hr

Then hmax

= $[0.25(1 \times 0.107 - 0.01008)]/0.35 = 0.069$ m or 69mm This is satisfactory where we have a sub base filter layer of 350mm

Thus proposed infiltration system permeable paving system is appropriate for this location

5.12 SuDS Checklists

SuDS checklists in accordance with *Appendix B of the CIRIA SuDS Manual C753* have been provided and are attached in Appendix 'H' of this document

6.0 Flood Risk Assessment

A flood risk assessment has been carried out for the site. The assessment is based on The Planning System and Flood Risk Management (FRM) Guidelines for Planning Authorities (2009). The FRM Guidelines require the planning system and national and regional levels to:

- Avoid development in areas at risk of flooding.
- Avoid new developments increasing flood risk elsewhere including that which may arise from surface water run-off.
- Adopt a sequential approach based on "Avoid, Substitute, Justify, Mitigate & Proceed" principles.

STAGE 1 - Flood Risk Identification

6.1 Existing Topography

The development site is shown in Figure 6.1. It comprises 7.95Ha on lands that are sloping from 1:20 at the upper areas to lands that are sloping at 1:8 at the lower areas. The height of the site above ordnance datum ranges from 29.6m AOD at its lowest point to 67.7m AOD at the highest point.

No streams or watercourse exist around or within the development site. A walkover of the site shows no evidence of areas of water channels or run-off. There is no evidence of springs on the site and trial holes carried out in wet and dry weather conditions did not find any water table.

Figure 6.1 Location of proposed development

6.2 Local Risk Identifications

The height of the development above sea level (+30.0m to +67.0m AOD) and the non-proximity to either fluvial (river) or tidal zones rules out the risk of flooding from these sources.

Due to the sloping nature of the development site, overland pluvial flooding needs to be considered.

Source: Due to the sloping nature of the site overland pluvial flooding should be

considered

Pathway: Pluvial run-off within the development. Run-off from within the development

onto the public roadway.

Receptor: Properties at the lower level of the proposed development. Existing properties

downhill of the proposed development.

6.3 Flood Zones

Flood zones are geographical areas within which the likelihood of flooding is in a particular range and they are a key tool in flood risk management within the planning process as well as in flood warning and emergency planning.

There are three types or levels of flood zones defined for the purposes of these Guidelines:

Flood Zone A

Where the probability of flooding from rivers and the sea is highest (greater than 1% or 1 in 100 for river flooding or 0.5% or 1 in 200 for coastal flooding).

Flood Zone B

Where the probability of flooding from rivers and the sea is moderate (between 0.1% or 1 in 1000 and 1% or 1 in 1000 for river flooding and between 0.1% or 1 in 1000 year and 0.5% or 1 in 200 for coastal flooding).

Flood Zone C

Where the probability of flooding from rivers and the sea is low (less than 0.1% or 1 in 1000 for both river and coastal flooding). Flood Zone C covers all areas of the plan which are not in zones A or B.

Based on Initial Assessment above the site is in Flood Zone C

6.4 Vulnerability Class

In accordance with Table 3.1 of the FRM document the development, being a housing development, is classed as a <u>Highly Vulnerable development</u>

6.5 Justification Test

In accordance with Table 3.2 of the FRM document, the development is deemed <u>Appropriate</u> as it lies fully within a Flood Zone C area.

6.6 STAGE 2 - Initial Flood Risk Assessment

6.6.1 Sources of flooding

Flooding Source	Comment	Risk
Tidal or Coastal Not near coast		None
Fluvial	No nearby rivers or streams.	None
	Elevated site location	

Surface Water	Overland	water	flow	or	Yes – Low risk
	overflow	of	drain	age	
	infrastruct	ure	dui	ing	
	significant rainfall events				
Ground Water	There is no evidence of			Yes – Low risk	
	springs at the site. Site				
	investigation trial pits did not				
	find any water table				

6.7 Sources of Flood Information

6.7.1 OPW Flood Maps Website (<u>www.floodmaps.ie</u>). This resource was consulted for evidence of flooding in the vicinity of the proposed development site.

The following flood maps are noted:

Figure 6.2 River Flood Extent, Medium and Low Probability

Figure 6.3 Indicative Fluvial Flooding High End Future Scenario Low & Medium Probability

Figure 6.4 Current Fluvial Flood Extent Map

Figure 6.5 OPW National Flood Hazard Mapping

The OPW flood mapping does not predict any flooding at the proposed development site. Figure 6.4 shows a 0.1% AEP (1:1000 chance of flooding in any given year) flood level risk of 8.770m AOD at the nearest Owenacurra river node point. As noted above the lowest point of the subject site is 29.60m AOD.

The Flood hazard mapping in Figure 6.5 shows one flood incident, associated with river flooding away from the site and well below the site level. This map also shown Geological Survey of Ireland Maximum Historic Groundwater Flooding. There is no record of ground water flooding at the subject site.

6.7.2 Geological Survey of Ireland (GSI)

GSI produce a series of maps on their interactive site GSI.ie. These show site soils and geology details along with Groundwater, Aquifer, Groundwater Vulnerability and Soils Permeability data. This data was consulted as part of the Flood Risk Assessment.

Soils data in Figure 6.6 shows that the site is primarily comprised of Till derived from Devonian sandstones. Figure 6.7 shows bedrock geology. This is classed as mudstone, sandstone and thin limestone.

Figure 6.8 shows the site to be at a location described as a locally important aquifer with bedrock which is moderately productive. The site is north of a regionally important karstified aquifer which runs from west of Cork city through Little Island and on towards Youghal.

The GSI mapping shows the underlying soils to be non-karst. There is no record of water associated with wells or springs at this locations

Figure 6.6 GSI – Quaternary Sediments map

Figure 6.7 GSI – Bedrock Geology

Figure 6.8 – GSI Groundwater Resources (Aquifers)

Figure 6.9 – GSI Groundwater Vulnerability

6.7.3 Historic Mapping

Both 6" and 25" historic mapping was consulted in relation to the proposed development site. No record relating to flooding, springs or watercourses are noted on this mapping.

6.8 Initial Flood Risk Assessment Summary

From the information reviewed no risk is considered associated with fluvial flooding events. It is also considered that there is no risk associated with the geology of the site and potential groundwater issues. It is further considered that sufficient data in relation to both these potential sources is available, and has been reviewed, to enable this assessment.

It is considered from the Initial Flood Risk Assessment that a flood risk exists at the proposed development location in relation to overland water flow or overflow of drainage infrastructure during significant rainfall events. A detailed Flood Risk Assessment in relation to this aspect thus follows.

6.9 STAGE 3 - Detailed Flood Risk Assessment

An assessment of overland water flow and overflow or exceedance of drainage infrastructure is deemed necessary for the proposed development. The proposed site has moderately steep topography which will be modified as part of the design to accommodate regulation-compliant circulation routes and to provide level areas for infrastructure, but will nevertheless potentially provide downhill run-off routes for excess water associated with extreme rainfall events. To mitigate against this the following measures have been adopted.

6.9.1 Mitigation Measures

The design incorporates various mitigation measures to prevent or limit overland run-off.

- The development is divided into discrete sections for drainage and access. Internal
 roads run across contours primarily falling towards the public roadway to the east.
 There are limited sections of roadway running directly downhill. This limits the
 gathering of surface water run-off in any specific area and limits the consequences of
 excessive build-up and discharge overtopping and surcharging an adjacent area
- The development has four separate exits onto the public roadway and will have separate connections of both the surface and foul water systems into new drainage pipework being laid in the public roadway to the bottom of the sloping public road. The separate sections of sewers including separate discharge points, limits cumulative effects in the drainage systems.
- A detailed SuDS design has been adopted for the surface water system in accordance with the Cork County Development Plan the Greater Dublin Strategic Drainage Study and Code of Practice and SuDS manual CIRIA 753. Interception and treatment at

- source has been incorporated to minimise run off into the drainage system. Permeable paving discharging to filter drains and soakaways has been incorporated to each property and to common parking areas.
- Two separate attenuation chambers have been incorporated to attenuate water runoff to greenfield site rates. These chambers are buried sealed concrete structures with lockable and sealed covers.
- Double gullies with individual connections to the drainage system are incorporated at appropriate surface water collection locations
- Raised kerbing or ramps are incorporated at specific locations to prevent excess surface water run-off entering lower areas.
- Raised kerbing is incorporated along all road edges on the downhill side of the roads running across the site.

6.9.2 Hydrological and Hydraulic calculations

- The drainage systems for the development have been designed using Causeway 3D modelling software incorporating hard-surface areas and falls, pipe sizes, materials and gradients to provide an appropriate receiving system for both surface and foul water volumes.
- The drain system modelling has been designed with reference to the Cork County Development Plan and the Greater Dublin Strategic Drainage Study and Code of Practice requirements.
- Appropriate climate change requirements have been incorporated into the design
- Site infiltration testing has been carried out to enable accurate design
- 30 year and 100 year return periods for a variety of event durations have been used for design calculations
- The receiving surface water network downstream has been separately modelled to confirm capacity for receipt of runoff. See Surface Water design section

6.9.3 Supporting Information

- A drawing showing the relevant mitigation measures incorporated into the development is attached with this report. Drawings 22/6372-P-1321 +1322.
- Full surface and foul water modelling design calculation are included as part of the Surface and Foul design in Appendix A & Appendix F
- A full set of design drawings for the proposed development is attached with this report

6.10 Pluvial Exceedance

The surface water drainage strategy has been assessed for a pluvial exceedance event. Exceedance routes have been reviewed for all roads. Typically an exceedance event will be triggered by a short high intensity rainfall period.

Roads throughout have 150mm high kerbing which will direct overflow waters downhill and away from properties. There are a number of locations where ponding of excess runoff is possible with a potential risk to properties. These vulnerable locations within the development are shown below are assessed individually hereunder.

Figure 6.10 Plan of site showing potential vulnerable locations during a pluvial exceedance event

Location 'A'

The north-western courtyard housing has a fall from the high point of the development to the eastern boundary of the courtyard. The area of estate roadway passing the courtyard entrance where exceedance may occur is shown highlighted. A raised table entry is incorporated at the entrance to ensure surface water from the estate road does not enter the courtyard area. Within the courtyard itself any surface water exceedance that is not drained by the permeable paving will pass to the filter drain at the lower end.

Figure 6.11 Location A - detail

Location 'B'

The courtyard housing at this location has a fall from the high point of the development to the eastern boundary of the courtyard. The estate roadway falls from two directions towards the entry point of the courtyard. A raised table entry is incorporated at the entrance of the courtyard to ensure surface water from the estate road does not enter the courtyard area. The SWMH04 manhole at this location will be fitted with D400 round grating cover and two gullys will be situated at the lower corner. The kerb at the lower road edge will be kept full height as far as the driveway point of House No 186. The top of the raised table is 290mm below the FFL of this house. Within the courtyard any surface water exceedance that is not drained by the permeable paving will pass to the filter drain at the lower end.

The filter drain capacity is outlined in section 5.11.2 above.

Figure 6.12 Location B - detail

Location 'C'

Location C is a hammerhead cul-de-sac situated above the main east-west retaining wall.

The roadway south of dwellings 159 to 175, shown coloured yellow below, contribute to the lowest collection point.

The lowest road level is at 59.45 AOD at MH SWMH61. This manhole has been added at this location and will be fitted with a round grating cover to allow maximum collection of storm water runoff. A double gully system will also be installed at this location.

The hammerhead is just north of the east-west retaining wall. This wall is constructed with a vertical filter drain 300mm wide over its full height, see drawing P-1110, which will take exceedance overflow. The retaining wall has a 500mm high upstand which will act as a retention location for exceedance ponding. The top of retaining wall level at this location is 60.10 allowing a ponding depth of up to 650mm depth. This is below the FFL of the block of houses to the north and thus these dwellings are protected.

The retained water area as may occur in an exceedance event is shaded in blue on the below location 'C' detail.

This has a 667sqm area at average depth of 0.325m giving a retained volume of 217m³. The contributing area of roadway is 710sqm

Referring to Section 5.11 above a 1:100 year storm for 15min duration gives a 107.2mm rainfall event. This contributes a volume of 76 m³ for the storm event which is less than retention volume. Therefore there is no risk to property.

Figure 6.13 Location C - detail

Location 'D'

This location is at a pedestrian crossing below the main east west retaining wall.

The roadway will have a raised table at the pedestrian crossing to prevent exceedance run off continuing westward to the end of this cul de sac roadway. Any surcharge of exceedance rainwater at this location will be directed south along the pedestrian pathway away from the adjacent dwellings, by ensuring the south side kerbing is at a lower level than the top of the raised table crossing. Road gullys will also be incorporated at this location.

Figure 6.14 Location D detail

Location 'E'

Location E is a hammerhead cul-de-sac situated above the main east-west retaining wall.

The estate roads shown coloured yellow below, contribute to the lowest collection point.

The lowest road level is at 59.38m AOD at MH SWMH62. This manhole has been added at this location and will be fitted with a round grating cover to allow maximum collection of storm water runoff. A double gully system will also be installed at this location.

The hammerhead is just north of the east-west retaining wall. This wall is constructed with a vertical filter drain 300mm wide over its full height, see drawing P-1110, which will take exceedance overflow. The retaining wall has a 500mm high upstand which will act as a retention location for exceedance ponding. The top of retaining wall level at this location is 60.00m AOD allowing a ponding depth of up to 650mm depth. This is below the FFL of the block of houses to the north and thus these dwellings are protected.

The retained water area as may occur in an exceedance event is shaded in blue on the below section E detail.

This has a 399 sqm area at average depth of 0.325m giving a retained volume of 130m³.

The contributing area of roadway is 925sqm

Referring to Section 5.11 above 1:100 year storm for 15min duration gives a 107.2mm rainfall event. This contributes a volume of 99m³ for the storm event which is less than retention volume. Therefore there is no risk to property.

Figure 6.15 Location E detail

Location 'F'

Location E is a hammerhead cul-de-sac situated below the main east-west retaining wall.

The estate roads shown coloured yellow below, contribute to the lowest collection point.

The lowest road level is at 52.38m AOD at MH SWMH52. This manhole will be fitted with a round grating cover to allow maximum collection of storm water runoff. A double gully system will also be installed at this location.

The drainage pipework from manholes SWMH 51 to 52 to 53 to 41 has been upsized from 225mm dia to 300mm dia.

The contributing road area is 605 sqm

The above referenced drainage pipework also partly serves the upper roadway as outlined in location E above, being an area of 925 sqm

If we conservatively take the two areas being fully served by this element of the SW network Total area served is 1530sqm

Taking a 1:100 year event giving 107.2mm of rainfall Runoff $Q = Aki = 1,530 \times 0.9 \times 0.1072 = 147 \text{m}^3/\text{hr}$ or 41L/s 300dia pipe capacity at installed falls of 1:5.5 = 500L/s Installed pipework has adequate capacity to cater for a 1:100 year event

Figure 6.16 Location F detail

6.11 Conclusion

The proposed development is within a Flood Zone 'C' and is considered appropriate for this site location.

The risk of overland water flow or exceedance of the proposed infrastructure has been considered and appropriate measures are incorporated into the design to mitigate against this risk.

Appendix A: Surface Water Drainage - Design Calculations

Page 1
Residential Development
Broomfield,
Midleton, Co. Cork

Page 2
Residential Development
Broomfield,
Midleton, Co. Cork

Page 3
Residential Development
Broomfield,
Midleton, Co. Cork

Node Name	61 34
A2 drawing	
A3 drawing	
Hor Scale 1500	
Ver Scale 100	
Datum (m) 40 000	
Datum (m) 48.000	
Link Name	2.00 225r
Section Type	225r
Slope (1:X)	96.6
Cover Level (m)	0 0
Cover Lever (III)	59.380
	$ \alpha _{\Omega}$
Invert Level (m)	44
///VCIC ECVCI (III)	\$6.82 112
	ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا
	NV
Length (m)	9.94
Length (III)	J

Page 5
Residential Development
Broomfield,
Midleton, Co. Cork

	Douglas, Cork	27/02/2024	Midleton, Co. Cork
Node Name		57 35	
Trode traine			
1			
1			
1			
1			
1			
A2 drawing			
A3 drawing			
Hor Scale 1500			
Ver Scale 100			
1			
Datum (m) 44.000			
Link Name		3.000	
Section Type		225mm	
Slope (1:X)		169.5	
Cover Level (m)			
COVER LEVER (III)		55.	
		56.557	
Invert Level (m)		53.208	
		53.208	
1		52	
Langeth (m)			
Length (m)		69.003	
	Flow	+ v10.7 Copyright © 1988-2024 Causeway Technologies Ltd	

Page 6
Residential Development
Broomfield,
Midleton, Co. Cork

Page 7
Residential Development
Broomfield,
Midleton, Co. Cork

Page 8
Residential Development
Broomfield,
Midleton, Co. Cork

Page 9
Residential Development
Broomfield,
Midleton, Co. Cork

	Douglas, Cork	27/02/2024	Midleton, Co. Cork
Node Name		66 67 41	
A3 drawing			
Hor Scale 1500			
Ver Scale 100			
Datum (m) 35.000			
Link Name		7.000 7.00	
Section Type		100mm 100r	
Slone (1:X)		36.3 15.8	
Slope (1:X)			
Cover Level (m)		216 70C	
		45.416	
Invert Level (m)		Z 6 6.	
` '		5.	
		45.737 44.116 44:519	
Length (m)		58.887 9.48	
	El	ow+ v10.7 Copyright © 1988-2024 Causeway Technologies Ltd	

Page 10
Residential Development
Broomfield,
Midleton, Co. Cork

Node Name	58 44
A3 drawing	
Hor Scale 1500 Ver Scale 100	
Datum (m) 27.000	
Link Name	8.000
Section Type Slope (1:X)	225mm 16.8
Cover Level (m)	
	35.422
Invert Level (m)	26
	33.997
Length (m)	86.681
	00.001

Page 11
Residential Development
Broomfield,
Midleton, Co. Cork

Node Name	59 45
A3 drawing Hor Scale 1500 Ver Scale 100	
Datum (m) 25.000	
Link Name	9.000
Section Type	225mm
Slope (1:X) Cover Level (m)	39.120 20.5 20.5
Invert Level (m)	30.80
Length (m)	69.156

Page 12
Residential Development
Broomfield,
Midleton, Co. Cork

Page 1
Residential Development
Broomfield,
Midleton, Co. Cork

Page 2
Residential Development
Broomfield,
Midleton, Co. Cork

Node Name	21 3
A3 drawing	
Hor Scale 1500	
Ver Scale 100	
Datum (m) 55.000	
Link Name	2.000
Section Type	225m
Slope (1:X)	169.4
Cover Level (m)	66.970
	66.970
	\bar{\tilde{\pi}}
Invert Level (m)	8 4
	89. 1. 61
	64.688
Length (m)	
Length (m)	12.53

Page 3
Residential Development
Broomfield,
Midleton, Co. Cork

Node Name	20 4
A3 drawing	
Hor Scale 1500	
Ver Scale 100	
Datum (m) 54.000	
Link Name	3.000
Costion Type	3.000 225mm
Section Type Slone (1:Y)	225mm
Slope (1:X)	169.5
Cover Level (m)	65.050
). 1. 1. 1. 1. 1. 1. 1. 1
Invert Level (m)	87 89
	63.623
Length (m)	39.999

Page 4
Residential Development
Broomfield,
Midleton, Co. Cork

Node Name	11 5
Node Name	
A3 drawing Hor Scale 1500 Ver Scale 100 Datum (m) 53.000	
Link Name	4.000
Section Type	225mm
Slope (1:X)	169.7
Cover Level (m)	63.768
Invert Level (m)	45
	61.145
Length (m)	37.000

Page 5
Residential Development
Broomfield,
Midleton, Co. Cork

Page 6
Residential Development
Broomfield,
Midleton, Co. Cork

Page 7
Residential Development
Broomfield,
Midleton, Co. Cork

AS drowling Her Scale 1000 Wer Scale 1000 Unit Name - 2000 Unit Name - 2200 Unit Name - 2	Node Name	12	13
Hor Scale 1500 Ver Scale 100 Per Scale 1			
Hor Scale 1500 Ver Scale 100 Datum (m) 54.000 Link Name Section Type Slope (1:X) Cover Level (m) Invert Level (m) Invert Level (m) Since 1500 Eff. 29 Eff. 2			
Hor Scale 1500 Ver Scale 100 Datum (m) 54.000 Link Name Section Type Slope (1:X) Cover Level (m) Invert Level (m) Invert Level (m) Since 1500 Eff. 29 Eff. 2			
Hor Scale 1500 Ver Scale 100 Datum (m) 54.000 Link Name Section Type Slope (1:X) Cover Level (m) Invert Level (m) Invert Level (m) Since 1500 Eff. 29 Eff. 2			
Hor Scale 1500 Ver Scale 100 Datum (m) 54.000 Link Name Section Type Slope (1:X) Cover Level (m) Invert Level (m) Invert Level (m) Since 1500 Eff.			
Hor Scale 1500 Ver Scale 100 Datum (m) 54.000 Link Name Section Type Slope (1:X) Cover Level (m) Invert Level (m) Invert Level (m) Since 1500 Eff. 29 Eff. 2			
Hor Scale 1500 Ver Scale 100 Datum (m) 54.000 Link Name Section Type Slope (1:X) Cover Level (m) Invert Level (m) Invert Level (m) Since 1500 Eff.			
Hor Scale 1500 Ver Scale 100 Datum (m) 54.000 Link Name Section Type Slope (1:X) Cover Level (m) Invert Level (m) Invert Level (m) Since 1500 Eff. 29 Eff. 2			
Hor Scale 1500 Ver Scale 100 Datum (m) 54.000 Link Name Section Type Slope (1:X) Cover Level (m) Invert Level (m) Invert Level (m) Since 1500 Eff.			
Hor Scale 1500 Ver Scale 100 Datum (m) 54.000 Link Name Section Type Slope (1:X) Cover Level (m) Invert Level (m) Invert Level (m) Since 1500 Eff.			
Hor Scale 1500 Ver Scale 100 Datum (m) 54.000 Link Name Section Type Slope (1:X) Cover Level (m) Invert Level (m) Invert Level (m) Since 1500 Eff.			
Hor Scale 1500 Ver Scale 100 Datum (m) 54.000 Link Name Section Type Slope (1:X) Cover Level (m) Invert Level (m) Invert Level (m) Since 1500 Eff.			
Hor Scale 1500 Ver Scale 100 Datum (m) 54.000 Link Name Section Type Slope (1:X) Cover Level (m) Invert Level (m) Invert Level (m) Since 1500 Eff.			
Hor Scale 1500 Ver Scale 100 Datum (m) 54.000 Link Name Section Type Slope (1:X) Cover Level (m) Invert Level (m) Invert Level (m) Since 1500 Eff.			
Hor Scale 1500 Ver Scale 100 Datum (m) 54.000 Link Name Section Type Slope (1:X) Cover Level (m) Invert Level (m) Invert Level (m) Since 1500 Eff.			
Hor Scale 1500 Ver Scale 100 Datum (m) 54.000 Link Name Section Type Slope (1:X) Cover Level (m) Invert Level (m) Invert Level (m) Since 1500 Eff. 29 Eff. 2			
Hor Scale 1500 Ver Scale 100 Datum (m) 54.000 Link Name Section Type Slope (1:X) Cover Level (m) Invert Level (m) Invert Level (m) Since 1500 Eff.			
Hor Scale 1500 Ver Scale 100 Datum (m) 54.000 Link Name Section Type Slope (1:X) Cover Level (m) Invert Level (m) Invert Level (m) Since 1500 Eff. 29 Eff. 2			
Hor Scale 1500 Ver Scale 100 Datum (m) 54.000 Link Name Section Type Slope (1:X) Cover Level (m) Invert Level (m) Invert Level (m) Since 1500 Eff. 29 Eff. 2			
Hor Scale 1500 Ver Scale 100 Datum (m) 54.000 Link Name Section Type Slope (1:X) Cover Level (m) Invert Level (m) Since 1			
Hor Scale 1500 Ver Scale 100 Datum (m) 54.000 Link Name Section Type Slope (1:X) Cover Level (m) Invert Level (m) Invert Level (m) Since 1500 Eff. 29 Eff. 2			
Hor Scale 1500 Ver Scale 100 Datum (m) 54.000 Link Name Section Type Slope (1:X) Cover Level (m) Invert Level (m) Since 1			
Hor Scale 1500 Ver Scale 100 Datum (m) 54.000 Link Name Section Type Slope (1:X) Cover Level (m) Invert Level (m) Since 1			
Hor Scale 1500 Ver Scale 100 Datum (m) 54.000 Link Name Section Type Slope (1:X) Cover Level (m) Invert Level (m) Since 1			
Hor Scale 1500 Ver Scale 100 Datum (m) 54.000 Link Name Section Type Slope (1:X) Cover Level (m) Invert Level (m) Since 1			
Hor Scale 1500 Ver Scale 100 Datum (m) 54.000 Link Name Section Type Slope (1:X) Cover Level (m) Invert Level (m) Since 1			
Hor Scale 1500 Ver Scale 100 Per Scale 1			
Hor Scale 1500 Ver Scale 100 Per Scale 1			
Hor Scale 1500 Ver Scale 100 Per Scale 1			
Hor Scale 1500 Ver Scale 100 Per Scale 1			
Hor Scale 1500 Ver Scale 100 Datum (m) 54.000 Link Name Section Type Slope (1:X) Cover Level (m) Invert Level (m) Since 1			
Hor Scale 1500 Ver Scale 100 Datum (m) 54.000 Link Name Section Type Slope (1:X) Cover Level (m) Invert Level (m) Since 1			
Hor Scale 1500 Ver Scale 100 Datum (m) 54.000 Link Name Section Type Slope (1:X) Cover Level (m) Invert Level (m) Since 1			
Hor Scale 1500 Ver Scale 100 Datum (m) 54.000 Link Name Section Type Slope (1:X) Cover Level (m) Invert Level (m) Invert Level (m) Since 1500 Eff. 29 Eff. 2			
Hor Scale 1500 Ver Scale 100 Datum (m) 54.000 Link Name Section Type Slope (1:X) Cover Level (m) Invert Level (m) Invert Level (m) Since 1500 Eff. 29 Eff. 2			
Hor Scale 1500 Ver Scale 100 Datum (m) 54.000 Link Name Section Type Slope (1:X) Cover Level (m) Invert Level (m) Invert Level (m) Since 1500 Eff. 29 Eff. 2			
Hor Scale 1500 Ver Scale 100 Datum (m) 54.000 Link Name Section Type Slope (1:X) Cover Level (m) Invert Level (m) Invert Level (m) Since 1500 Eff. 29 Eff. 2			
Hor Scale 1500 Ver Scale 100 Datum (m) 54.000 Link Name Section Type Slope (1:X) Cover Level (m) Invert Level (m) Invert Level (m) Since 1500 Eff. 29 Eff. 2			
Hor Scale 1500 Ver Scale 100 Datum (m) 54.000 Link Name Section Type Slope (1:X) Cover Level (m) Invert Level (m) Invert Level (m) Since 1500 Eff. 29 Eff. 2			
Hor Scale 1500 Ver Scale 100 Datum (m) 54.000 Link Name Section Type Slope (1:X) Cover Level (m) Invert Level (m) Invert Level (m) Since 1500 Eff. 29 Eff. 2			
Hor Scale 1500 Ver Scale 100 Datum (m) 54.000 Link Name Section Type Slope (1:X) Cover Level (m) Invert Level (m) Invert Level (m) Since 1500 Eff. 29 Eff. 2			
Hor Scale 1500 Ver Scale 100 Datum (m) 54.000 Link Name Section Type Slope (1:X) Cover Level (m) Invert Level (m) Invert Level (m) Since 1500 Eff. 29 Eff. 2			
Hor Scale 1500 Ver Scale 100 Datum (m) 54.000 Link Name Section Type Slope (1:X) Cover Level (m) Invert Level (m) Invert Level (m) Since 1500 Eff. 29 Eff. 2			
Hor Scale 1500 Ver Scale 100 Datum (m) 54.000 Link Name Section Type Slope (1:X) Cover Level (m) Invert Level (m) Invert Level (m) Since 1500 Eff. 29 Eff. 2	A3 drawing		
Datum (m) 54.000 T.000 Link Name 7.000 Section Type 225mm Slope (1:X) 22.6 Cover Level (m) 88 / 9 Invert Level (m) 88 / 9			
Datum (m) 54.000 T.000 Link Name 7.000 Section Type 225mm Slope (1:X) 22.6 Cover Level (m) 80 / 9 / 9 / 9 / 9 / 9 / 9 / 9 / 9 / 9 /	Hor Scale 1500		
Datum (m) 54.000 T.000 Link Name T.000 Section Type 225mm Slope (1:X) T.000 Cover Level (m) 88/8 Invert Level (m) 88/8	Ver Scale 100		
Link Name 7.000 Section Type 225mm Slope (1:X) 22.6 Cover Level (m) \$\frac{9}{2}\$ \$\frac{8}{2}\$ Invert Level (m) \$\frac{1}{2}\$ \$\frac{4}{8}\$			
Link Name 7.000 Section Type 225mm Slope (1:X) 22.6 Cover Level (m) \$\frac{9}{2}\$ \$\frac{8}{2}\$ Invert Level (m) \$\frac{1}{2}\$ \$\frac{4}{8}\$	Datum (m) 5/1 000		
Section Type 225mm Slope (1:X) 22.6 Cover Level (m) 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Link Name	7 000	
Cover Level (m) 22.6	Section Type	7.000	
Invert Level (m) 65.344 Cover Level (m) 66.750	Slone (1.V)	22511111	
Invert Level (m)	Cover Level (==)		
Invert Level (m) 865.313	Cover Level (m)	75C	08
Invert Level (m) 865.313		96.7	46
65.3			
65.3	Invert Level (m)	€ <u> </u>	
		:: 32 :: 32	
		65	
107.000	Length (m)		
	Length (m)	67.000	

Page 8
Residential Development
Broomfield,
Midleton, Co. Cork

	Douglas, Cork	21/02/2024	ividietori, Co. Cork
Node Name		19 8	
		n	
		h II	
A3 drawing			
0			
Hor Scale 1500			
Ver Scale 100			
vei Scale 100			
Datum (m) 51.000			
Link Name		8.000	
Section Type		225mm	
Slope (1:X)		169.5	
Cover Level (m)			
- , ,		5 . 6 .	
		62.230	
Invert Level (m)		\frac{70}{4}	
		10	
		6 6	
		59.754	
Length (m)		40.000	

Page 9
Residential Development
Broomfield,
Midleton, Co. Cork

Node Name	24 25 26
A3 drawing	
Hor Scale 1500	
Ver Scale 100	
Datum (m) 47.000	
Link Name	9.000 9.00
Section Type Slope (1:X)	225mm 225 56.1 16.1
Cover Level (m)	Ο
	60.080 60.080 55.630
Invert Level (m)	27 38 38 33 38
	55.388
Length (m)	37.069 8.41
	Flow+ v10.7 Copyright © 1988-2024 Causeway Technologies Ltd

File: Broomfield Midleton-RFI.; Network: Storm Network 1 George Forde 27/02/2024 Page 1 Residential Development Broomfield, Midleton, Co. Cork

Design Settings

Rainfall Methodology FSR Return Period (years) 100 Additional Flow (%) 10

FSR Region Scotland and Ireland

M5-60 (mm) 19.000 Ratio-R 0.300 CV 0.750

Time of Entry (mins) 60.00

Maximum Time of Concentration (mins) 30.00

Maximum Rainfall (mm/hr) 50.0

Minimum Velocity (m/s) 1.00

Connection Type Level Soffits

Minimum Backdrop Height (m) 0.200

Preferred Cover Depth (m) 1.200 Include Intermediate Ground ✓ Enforce best practice design rules ✓

Nodes

Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
2	0.026	60.00	66.670	1200	588137.852	575254.823	3.716
3	0.036	60.00	66.970	1200	588127.800	575237.532	4.134
4	0.135	60.00	65.720	1200	588159.086	575196.335	3.189
5	0.135	60.00	63.768	1200	588183.445	575139.310	2.916
23			61.450	1350	587971.335	575131.285	2.264
6	0.123	60.00	65.833	1200	588128.869	575114.380	5.227
7	0.169	60.00	63.877	1350	588038.942	575118.012	3.714
19		60.00	62.230	1200	588003.642	575082.305	2.476
12		60.00	66.750	1200	588092.794	575226.294	1.437
13	0.035	60.00	64.800	1200	588040.044	575184.985	2.456
14			63.610	1200	588012.505	575159.011	2.616
15	0.048	60.00	63.200	1200	588012.107	575127.360	2.676
30		60.00	64.002	1200	588162.620	575287.121	1.425
16	0.021	60.00	66.700	1200	588110.692	575143.333	1.851
17	0.036	60.00	66.800	1200	588099.946	575164.813	2.093
18	0.016	60.00	66.300	1200	588085.059	575183.638	1.735
20		60.00	65.050	1200	588196.560	575210.322	1.427
11		60.00	62.570	1200	588217.489	575153.801	1.425
22			62.320	1800	587987.972	575136.908	3.090
8	0.085	60.00	62.970	1350	588003.899	575122.304	3.677
9	0.038	60.00	62.687	1350	587995.465	575123.337	3.415
10			62.460	1800	587994.256	575131.484	3.209
28	0.076	60.00	66.188	1200	588064.239	575213.641	4.335
29			64.091	1200	588015.640	575169.229	2.626
31	0.030	60.00	66.649	1200	588128.868	575262.221	4.319
27	0.022	60.00	67.362	1200	588107.660	575246.655	5.187
24	0.005	60.00	60.080	1200	587960.663	575110.054	4.692
25	0.018	60.00	56.776	1200	587937.071	575081.462	2.049
26			55.630	1200	587928.662	575081.581	1.425
21		60.00	66.780	1200	588120.218	575247.519	2.092
1		60.00	65.370	1200	588174.973	575269.723	2.180

File: Broomfield Midleton-RFI.; Network: Storm Network 1 George Forde 27/02/2024 Page 2 Residential Development Broomfield, Midleton, Co. Cork

<u>Links</u>

Name	US	DS	Length	ks (mm) /	US IL	DS IL	Fall	Slope	Dia	T of C	Rain
	Node	Node	(m)	n	(m)	(m)	(m)	(1:X)	(mm)	(mins)	(mm/hr)
1.009	10	22	8.301	0.600	59.251	59.230	0.021	395.3	450	30.00	50.0
5.002	27	28	54.546	0.600	62.175	61.853	0.322	169.4	225	30.00	50.0
1.010	22	23	17.562	0.600	59.230	59.186	0.044	399.1	450	30.00	50.0
4.000	11	5	37.000	0.600	61.145	60.927	0.218	169.7	225	30.00	50.0
5.003	28	29	65.835	0.600	61.853	61.465	0.388	169.7	225	30.00	50.0
5.000	30	31	41.943	0.600	62.577	62.330	0.247	169.8	225	30.00	50.0
5.001	31	27	26.307	0.600	62.330	62.175	0.155	169.7	225	30.00	50.0
7.000	12	13	67.000	0.600	65.313	62.344	2.969	22.6	225	30.00	50.0
6.003	13	14	37.856	0.600	62.344	62.121	0.223	169.8	225	30.00	50.0
5.005	14	15	31.654	0.600	60.994	60.599	0.396	80.0	225	30.00	50.0
1.000	1	2	40.000	0.600	63.190	62.954	0.236	169.5	225	30.00	50.0
6.000	16	17	24.018	0.600	64.849	64.707	0.142	169.1	225	30.00	50.0
6.001	17	18	24.000	0.600	64.707	64.565	0.142	169.0	225	30.00	50.0
6.002	18	13	45.035	0.600	64.565	63.375	1.190	37.8	225	30.00	50.0
1.001	2	3	20.001	0.600	62.954	62.836	0.118	169.5	225	30.00	50.0
2.000	21	3	12.539	0.600	64.688	64.614	0.074	169.4	225	30.00	50.0
1.002	3	4	51.730	0.600	62.836	62.531	0.305	169.6	225	30.00	50.0
1.003	4	5	62.010	0.600	62.531	62.165	0.366	169.4	225	30.00	50.0
5.004	29	14	10.688	0.600	61.465	60.994	0.471	22.7	225	30.00	50.0
3.000	20	4	39.999	0.600	63.623	63.387	0.236	169.5	225	30.00	50.0
8.000	19	8	40.000	0.600	59.754	59.518	0.236	169.5	225	30.00	50.0
9.000	24	25	37.069	0.600	55.388	54.727	0.661	56.1	225	30.00	50.0

Name	Vel	Сар	Flow	US	DS	Σ Area	Σ Add	Pro	Pro
	(m/s)	(I/s)	(I/s)	Depth	Depth	(ha)	Inflow	Depth	Velocity
				(m)	(m)		(I/s)	(mm)	(m/s)
1.009	1.016	161.6	153.7	2.759	2.640	1.031	0.0	353	1.149
5.002	1.001	39.8	7.7	4.962	4.110	0.052	0.0	67	0.780
1.010	1.011	160.8	153.7	2.640	1.814	1.031	0.0	355	1.144
4.000	1.000	39.8	0.0	1.200	2.616	0.000	0.0	0	0.000
5.003	1.001	39.8	19.1	4.110	2.401	0.128	0.0	109	0.989
5.000	1.000	39.8	0.0	1.200	4.094	0.000	0.0	0	0.000
5.001	1.000	39.8	4.4	4.094	4.962	0.030	0.0	51	0.664
7.000	2.766	110.0	0.0	1.212	2.231	0.000	0.0	0	0.000
6.003	1.000	39.8	16.0	2.231	1.264	0.107	0.0	99	0.946
5.005	1.463	58.2	35.0	2.391	2.376	0.235	0.0	126	1.529
1.000	1.001	39.8	0.0	1.955	3.491	0.000	0.0	0	0.000
6.000	1.002	39.8	3.1	1.626	1.868	0.021	0.0	43	0.602
6.001	1.003	39.9	8.5	1.868	1.510	0.057	0.0	70	0.797
6.002	2.133	84.8	10.8	1.510	1.200	0.072	0.0	54	1.476
1.001	1.001	39.8	3.9	3.491	3.909	0.026	0.0	47	0.637
2.000	1.001	39.8	0.0	1.867	2.131	0.000	0.0	0	0.000
1.002	1.001	39.8	9.3	3.909	2.964	0.062	0.0	73	0.817
1.003	1.001	39.8	29.5	2.964	1.378	0.198	0.0	145	1.094
5.004	2.757	109.6	19.1	2.401	2.391	0.128	0.0	63	2.075
3.000	1.001	39.8	0.0	1.202	2.108	0.000	0.0	0	0.000
8.000	1.001	39.8	0.0	2.251	3.227	0.000	0.0	0	0.000
9.000	1.750	69.6	0.7	4.467	1.824	0.005	0.0	16	0.571

File: Broomfield Midleton-RFI.; Network: Storm Network 1 George Forde 27/02/2024 Page 3 Residential Development Broomfield, Midleton, Co. Cork

<u>Links</u>

Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)
9.001	25	26	8.410	0.600	54.727	54.205	0.522	16.1	225	30.00	50.0
1.004	5	6	60.000	0.600	60.852	60.606	0.246	243.9	300	30.00	50.0
1.005	6	7	90.000	0.600	60.606	60.238	0.368	244.6	300	30.00	50.0
1.006	7	8	35.305	0.600	60.163	60.054	0.109	323.9	375	30.00	50.0
1.007	8	9	8.497	0.600	59.293	59.272	0.021	404.6	450	30.00	50.0
1.008	9	10	8.236	0.600	59.272	59.251	0.021	392.2	450	30.00	50.0
5.006	15	8	9.640	0.600	60.524	60.484	0.040	241.0	300	30.00	50.0

Name	Vel (m/s)	Cap (l/s)	Flow (I/s)	US Depth	DS Depth	Σ Area (ha)	Σ Add Inflow	Pro Depth	Pro Velocity
				(m)	(m)		(I/s)	(mm)	(m/s)
9.001	3.275	130.2	3.4	1.824	1.200	0.023	0.0	25	1.425
1.004	1.002	70.8	49.6	2.616	4.927	0.333	0.0	185	1.082
1.005	1.001	70.7	67.9	4.927	3.339	0.456	0.0	237	1.134
1.006	1.001	110.6	93.1	3.339	2.541	0.625	0.0	265	1.117
1.007	1.004	159.7	148.0	3.227	2.965	0.993	0.0	344	1.133
1.008	1.020	162.3	153.7	2.965	2.759	1.031	0.0	351	1.153
5.006	1.008	71.3	42.1	2.376	2.186	0.283	0.0	166	1.049

Pipeline Schedule

Link	Length (m)	Slope (1:X)	Dia (mm)	Link Type	US CL (m)	US IL (m)	US Depth (m)	DS CL (m)	DS IL (m)	DS Depth (m)
1.009	8.301	395.3	450	Circular	62.460	59.251	2.759	62.320	59.230	2.640
5.002	54.546	169.4	225	Circular	67.362	62.175	4.962	66.188	61.853	4.110
1.010	17.562	399.1	450	Circular	62.320	59.230	2.640	61.450	59.186	1.814
4.000	37.000	169.7	225	Circular	62.570	61.145	1.200	63.768	60.927	2.616
5.003	65.835	169.7	225	Circular	66.188	61.853	4.110	64.091	61.465	2.401
5.000	41.943	169.8	225	Circular	64.002	62.577	1.200	66.649	62.330	4.094
5.001	26.307	169.7	225	Circular	66.649	62.330	4.094	67.362	62.175	4.962
7.000	67.000	22.6	225	Circular	66.750	65.313	1.212	64.800	62.344	2.231
6.003	37.856	169.8	225	Circular	64.800	62.344	2.231	63.610	62.121	1.264
5.005	31.654	80.0	225	Circular	63.610	60.994	2.391	63.200	60.599	2.376
1.000	40.000	169.5	225	Circular	65.370	63.190	1.955	66.670	62.954	3.491

Link	US	Dia	Node	MH	DS	Dia	Node	MH
	Node	(mm)	Type	Туре	Node	(mm)	Type	Type
1.009	10	1800	Manhole	Adoptable	22	1800	Manhole	Adoptable
5.002	27	1200	Manhole	Adoptable	28	1200	Manhole	Adoptable
1.010	22	1800	Manhole	Adoptable	23	1350	Manhole	Adoptable
4.000	11	1200	Manhole	Adoptable	5	1200	Manhole	Adoptable
5.003	28	1200	Manhole	Adoptable	29	1200	Manhole	Adoptable
5.000	30	1200	Manhole	Adoptable	31	1200	Manhole	Adoptable
5.001	31	1200	Manhole	Adoptable	27	1200	Manhole	Adoptable
7.000	12	1200	Manhole	Adoptable	13	1200	Manhole	Adoptable
6.003	13	1200	Manhole	Adoptable	14	1200	Manhole	Adoptable
5.005	14	1200	Manhole	Adoptable	15	1200	Manhole	Adoptable
1.000	1	1200	Manhole	Adoptable	2	1200	Manhole	Adoptable

File: Broomfield Midleton-RFI.; Network: Storm Network 1 George Forde 27/02/2024 Page 4
Residential Development
Broomfield,
Midleton, Co. Cork

Pipeline Schedule

Link	Length	Slope	Dia	Link	US CL	US IL	US Depth	DS CL	DS IL	DS Depth
	(m)	(1:X)	(mm)	Type	(m)	(m)	(m)	(m)	(m)	(m)
6.000	24.018	169.1	225	Circular	66.700	64.849	1.626	66.800	64.707	1.868
6.001	24.000	169.0	225	Circular	66.800	64.707	1.868	66.300	64.565	1.510
6.002	45.035	37.8	225	Circular	66.300	64.565	1.510	64.800	63.375	1.200
1.001	20.001	169.5	225	Circular	66.670	62.954	3.491	66.970	62.836	3.909
2.000	12.539	169.4	225	Circular	66.780	64.688	1.867	66.970	64.614	2.131
1.002	51.730	169.6	225	Circular	66.970	62.836	3.909	65.720	62.531	2.964
1.003	62.010	169.4	225	Circular	65.720	62.531	2.964	63.768	62.165	1.378
5.004	10.688	22.7	225	Circular	64.091	61.465	2.401		60.994	2.391
3.000	39.999	169.5	225	Circular	65.050	63.623	1.202	65.720	63.387	2.108
8.000	40.000	169.5	225	Circular	62.230	59.754	2.251		59.518	3.227
9.000	37.069	56.1	225	Circular	60.080	55.388	4.467	56.776	54.727	1.824
9.001	8.410	16.1	225	Circular	56.776	54.727	1.824		54.205	1.200
1.004	60.000	243.9	300	Circular	63.768	60.852	2.616	65.833	60.606	4.927
4 005	00.000	2446	200	6: 1	c= 000	60.606	4.00-	60.077	60.000	
1.005	90.000	244.6	300	Circular	65.833	60.606	4.927	63.877	60.238	3.339
1.006	35.305	323.9	375	Circular	63.877	60.163	3.339	62.970	60.054	2.541
1.007	8.497	404.6	450	Circular	62.970	59.293	3.227		59.272	2.965
1.008	8.236	392.2	450	Circular	62.687	59.272	2.965	62.460	59.251	2.759
5.006	9.640	241.0	300	Circular	63.200	60.524	2.376	62.970	60.484	2.186
	Link	US	Dia	Node	МН	DS	Dia	Node	МН	
		Node	(mm)	Type	Туре	Node	e (mm)	Type	Type	
	6.000	Node 16	(mm) 1200	Type Manhole	Type Adoptab	Node ole 17	e (mm) 1200	Type Manhole	Type Adoptabl	
	6.000 6.001	Node 16 17	(mm) 1200 1200	Type Manhole Manhole	Type Adoptab Adoptab	Node ole 17 ole 18	e (mm) 1200 1200	Type Manhole Manhole	Type Adoptabl Adoptabl	е
	6.000 6.001 6.002	Node 16 17 18	(mm) 1200 1200 1200	Type Manhole Manhole Manhole	Type Adoptab Adoptab Adoptab	Node ble 17 ble 18 ble 13	1200 1200 1200	Type Manhole Manhole Manhole	Type Adoptabl Adoptabl Adoptabl	e e
	6.000 6.001 6.002 1.001	Node 16 17 18 2	(mm) 1200 1200 1200 1200	Type Manhole Manhole Manhole Manhole	Type Adoptab Adoptab Adoptab Adoptab	Node ble 17 ble 18 ble 13 ble 3	(mm) 1200 1200 1200 1200	Type Manhole Manhole Manhole Manhole	Type Adoptabl Adoptabl Adoptabl	e e e
	6.000 6.001 6.002 1.001 2.000	Node 16 17 18 2 21	(mm) 1200 1200 1200 1200 1200	Type Manhole Manhole Manhole Manhole	Type Adoptab Adoptab Adoptab Adoptab Adoptab	Node ble 17 ble 18 ble 13 ble 3 ble 3	(mm) 1200 1200 1200 1200 1200	Type Manhole Manhole Manhole Manhole	Type Adoptabl Adoptabl Adoptabl Adoptabl Adoptabl	e e e
	6.000 6.001 6.002 1.001 2.000 1.002	Node 16 17 18 2 21 3	(mm) 1200 1200 1200 1200 1200 1200	Type Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab	Node ble 17 ble 18 ble 13 ble 3 ble 3 ble 4	(mm) 1200 1200 1200 1200 1200 1200	Type Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptabl Adoptabl Adoptabl Adoptabl Adoptabl Adoptabl	e e e e
	6.000 6.001 6.002 1.001 2.000	Node 16 17 18 2 21	(mm) 1200 1200 1200 1200 1200	Type Manhole Manhole Manhole Manhole	Type Adoptab Adoptab Adoptab Adoptab Adoptab	Node ble 17 ble 18 ble 13 ble 3 ble 3 ble 4	(mm) 1200 1200 1200 1200 1200	Type Manhole Manhole Manhole Manhole	Type Adoptabl Adoptabl Adoptabl Adoptabl Adoptabl	e e e e
	6.000 6.001 6.002 1.001 2.000 1.002	Node 16 17 18 2 21 3	(mm) 1200 1200 1200 1200 1200 1200	Type Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab	Node 17 le 18 le 13 le 3 le 3 le 4 le 5	(mm) 1200 1200 1200 1200 1200 1200	Type Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptabl Adoptabl Adoptabl Adoptabl Adoptabl Adoptabl	e e e e e
	6.000 6.001 6.002 1.001 2.000 1.002 1.003	Node 16 17 18 2 21 3	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab	Node 17 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	(mm) 1200 1200 1200 1200 1200 1200 1200	Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptabl Adoptabl Adoptabl Adoptabl Adoptabl Adoptabl Adoptabl	e e e e e
	6.000 6.001 6.002 1.001 2.000 1.002 1.003 5.004 3.000	Node 16 17 18 2 21 3 4	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab	Node 17 le 18 le 13 le 3 le 3 le 4 le 5	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptabl Adoptabl Adoptabl Adoptabl Adoptabl Adoptabl Adoptabl Adoptabl	e e e e e e
	6.000 6.001 6.002 1.001 2.000 1.002 1.003 5.004 3.000	Node 16 17 18 2 21 3 4 29 20	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole	Type Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab	Node 17	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole	Type Adoptabl Adoptabl Adoptabl Adoptabl Adoptabl Adoptabl Adoptabl Adoptabl Adoptabl	e e e e e e
	6.000 6.001 6.002 1.001 2.000 1.002 1.003 5.004 3.000 8.000 9.000	Node 16 17 18 2 21 3 4 29 20	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole	Type Adoptab	Node 17	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole	Type Adoptabl	e e e e e e e e
	6.000 6.001 6.002 1.001 2.000 1.002 1.003 5.004 3.000 8.000 9.000 9.001	Node 16 17 18 2 21 3 4 29 20 19 24 25	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole	Type Adoptab	Node le 17 le 18 le 13 le 3 le 3 le 4 le 5 le 4 le 5 le 25 le 26	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole	Type Adoptabl	e e e e e e e e e
	6.000 6.001 6.002 1.001 2.000 1.002 1.003 5.004 3.000 8.000 9.000	Node 16 17 18 2 21 3 4 29 20	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole	Type Adoptab	Node le 17 le 18 le 13 le 3 le 3 le 4 le 5 le 4 le 5 le 25 le 26	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole	Type Adoptabl	e e e e e e e e e
	6.000 6.001 6.002 1.001 2.000 1.002 1.003 5.004 3.000 8.000 9.000 9.001	Node 16 17 18 2 21 3 4 29 20 19 24 25	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole	Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab	Node le 17 le 18 le 13 le 3 le 3 le 4 le 5 le 4 le 5 le 26 le 6	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole	Type Adoptabl	e e e e e e e e e e e e e e e e e e e
	6.000 6.001 6.002 1.001 2.000 1.002 1.003 5.004 3.000 8.000 9.000 9.001 1.004	Node 16 17 18 2 21 3 4 29 20 19 24 25 5	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole	Type Adoptab	Node 17	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole	Type Adoptabl	e e e e e e e e e e e e
	6.000 6.001 6.002 1.001 2.000 1.002 1.003 5.004 3.000 8.000 9.000 9.001 1.004	Node 16 17 18 2 21 3 4 29 20 19 24 25 5	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole	Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab	Node 17	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole	Type Adoptabl	e e e e e e e e e e e e e e e e e e e
	6.000 6.001 6.002 1.001 2.000 1.002 1.003 5.004 3.000 8.000 9.000 9.001 1.004 1.005 1.006	Node 16 17 18 2 21 3 4 29 20 19 24 25 5	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole	Type Adoptab	Node 17	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole	Type Adoptabl	
	6.000 6.001 6.002 1.001 2.000 1.002 1.003 5.004 3.000 8.000 9.000 9.001 1.004 1.005 1.006 1.007	Node 16 17 18 2 21 3 4 29 20 19 24 25 5	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole	Type Adoptab	Node 17	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole	Type Adoptabl	

File: Broomfield Midleton-RFI.; Network: Storm Network 1 George Forde 27/02/2024 Page 5 Residential Development Broomfield, Midleton, Co. Cork

Manhole Schedule

Node	Easting	Northing	CL	Depth	Dia	Connections	Link	IL	Dia
	(m)	(m)	(m)	(m)	(mm)			(m)	(mm)
2	588137.852	575254.823	66.670	3.716	1200	1	1.000	62.954	225
						0	1.001	62.954	225
3	588127.800	575237.532	66.970	4.134	1200	1, 3 1	2.000	64.614	225
						2	1.001	62.836	225
						0	1.002	62.836	225
4	588159.086	575196.335	65.720	3.189	1200	2 1	3.000	63.387	225
						1 2	1.002	62.531	225
						9 0	1.003	62.531	225
5	588183.445	575139.310	63.768	2.916	1200	2 1	4.000	60.927	225
						1 2	1.003	62.165	225
						0	1.004	60.852	300
23	587971.335	575131.285	61.450	2.264	1350	1	1.010	59.186	450
6	588128.869	575114.380	65.833	5.227	1200	_ 1	1.004	60.606	300
						0 ←			
						0	1.005	60.606	300
7	588038.942	575118.012	63.877	3.714	1350	1	1.005	60.238	300
						0 ← 1			
						0	1.006	60.163	375
19	588003.642	575082.305	62.230	2.476	1200				
						0	8.000	59.754	225
12	588092.794	575226.294	66.750	1.437	1200				
							7 000	6E 212	225
13	588040 044	575184.985	64.800	2.456	1200	1	7.000	65.313 62.344	225
13	388040.044	373104.303	04.800	2.430	1200	1 $\frac{1}{2}$	6.002	63.375	225
						2	0.002	03.373	223
						0	6.003	62.344	225
14	588012.505	575159.011	63.610	2.616	1200	² 1	6.003	62.121	225
						2	5.004	60.994	225
						⋄ 0	5.005	60.994	225
15	588012.107	575127.360	63.200	2.676	1200		5.005	60.599	225
						0	5.006	60.524	300
30	588162.620	575287.121	64.002	1.425	1200				
						0	5.000	62.577	225
							1	-	-

File: Broomfield Midleton-RFI.; Network: Storm Network 1 George Forde 27/02/2024 Page 6 Residential Development Broomfield, Midleton, Co. Cork

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	Link	IL (m)	Dia (mm)
16	588110.692	575143.333	66.700	1.851	1200	0			
						0	6.000	64.849	225
17	588099.946	575164.813	66.800	2.093	1200	0 1	6.000	64.707	225
						1 0	6.001	64.707	225
18	588085.059	575183.638	66.300	1.735	1200	0 ← 0	6.001	64.565	225
20	588196.560	575210.322	65.050	1.427	1200	U	6.002	64.565	225
20	300130.300	373210.322	03.030	1.427	1200	•	2,000	62 622	225
11	588217.489	575153.801	62.570	1.425	1200	0	3.000	63.623	225
11	300217.403	373133.601	02.570	1.423	1200		4.000	64.445	225
22	587987.972	575136.908	62.320	3.090	1800	0	4.000 1.009	61.145 59.230	225 450
22	36/96/.9/2	373130.908	02.520	3.090	1800			39.230	430
						. 0	1.010	59.230	450
8	588003.899	575122.304	62.970	3.677	1350	1	8.000	59.518	225
						0 ← 2 3 3	5.006	60.484 60.054	300 375
							1.000	59.293	450
9	587995.465	575123.337	62.687	3.415	1350	0 1	1.007	59.272	450
4.0	507004 256	575424 404	62.460	2 200	4000	0	1.008	59.272	450
10	587994.256	575131.484	62.460	3.209	1800		1.008	59.251	450
28	588064 230	575213.641	66 199	4.335	1200	i 0	1.009 5.002	59.251 61.853	450 225
20	366004.233	3/3213.041	00.188	4.333	1200				
29	588015.640	575169.229	64.091	2.626	1200	0	5.003	61.853 61.465	225 225
29	366013.040	373109.229	04.091	2.020	1200				
24	500430.000	F7F262 224		4 240	4200	0 0	5.004	61.465	225
31	588128.868	575262.221	66.649	4.319	1200		5.000	62.330	225
27	588107.660	575246.655	67.362	5.187	1200	0	5.001	62.330 62.175	225 225
۷1	386107.000	373240.033	07.302	5.167	1200	1			
						0	5.002	62.175	225

File: Broomfield Midleton-RFI.; Network: Storm Network 1 George Forde 27/02/2024 Page 7 Residential Development Broomfield, Midleton, Co. Cork

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	Link	IL (m)	Dia (mm)
24	587960.663	575110.054	60.080	4.692	1200	\bigcirc			
						0	9.000	55.388	225
25	587937.071	575081.462	56.776	2.049	1200	0 ← 1	9.000	54.727	225
						0	9.001	54.727	225
26	587928.662	575081.581	55.630	1.425	1200	1	9.001	54.205	225
21	588120.218	575247.519	66.780	2.092	1200		2.000	64.688	225
1	588174.973	575269.723	65.370	2.180	1200		1.000	63.190	225

Simulation Settings

Rainfall Methodology	FSR	Drain Down Time (mins)	240
FSR Region	Scotland and Ireland	Additional Storage (m³/ha)	20.0
M5-60 (mm)	19.000	Check Discharge Rate(s)	\checkmark
Ratio-R	0.300	1 year (l/s)	20.2
Summer CV	0.750	30 year (l/s)	40.2
Winter CV	0.840	100 year (l/s)	47.7
Analysis Speed	Normal	Check Discharge Volume	\checkmark
Skip Steady State	\checkmark	100 year 360 minute (m³)	1702

Storm Durations

15	30	60	120	180	240	360	480	600	720	960	1440

Return Period	Climate Change	Additional Area	Additional Flow
(years)	(CC %)	(A %)	(Q %)
5	10	0	0
10	10	0	0
30	10	0	0
100	20	0	0

Pre-development Discharge Rate

Site Makeup	Greenfield	Growth Factor 30 year	1.65
Greenfield Method	IH124	Growth Factor 100 year	1.96
Positively Drained Area (ha)	7.950	Betterment (%)	0
SAAR (mm)	1091	QBar	24.4
Soil Index	2	Q 1 year (I/s)	20.2
SPR	0.30	Q 30 year (I/s)	40.2
Region	11	Q 100 year (I/s)	47.7
Growth Factor 1 year	0.83		

Brian O'Kennedy and Associate Shannon House

Church Road

Douglas, Cork

File: Broomfield Midleton-RFI.;

Network: Storm Network 1 George Forde

27/02/2024

Page 8 **Residential Development**

Broomfield,

Midleton, Co. Cork

Pre-development Discharge Volume

Site Makeup Greenfield Return Period (years) 100 Greenfield Method FSR/FEH Climate Change (%) 0 Storm Duration (mins) Positively Drained Area (ha) 7.950 360 Soil Index 2 Betterment (%) 0 SPR 0.30 PR 0.341 CWI 125.228 Runoff Volume (m³) 1702

Node 22 Online Hydro-Brake® Control

Flap Valve	X	Objective	(HE) Minimise upstream storage
Replaces Downstream Link	X	Sump Available	\checkmark
Invert Level (m)	59.230	Product Number	CTL-SHE-0172-1900-2500-1900
Design Depth (m)	2.500	Min Outlet Diameter (m)	0.225
Design Flow (I/s)	19.0	Min Node Diameter (mm)	1800

Node 29 Online Hydro-Brake® Control

Flap Valve	\checkmark	Objective	(HE) Minimise upstream storage
Replaces Downstream Link	X	Sump Available	\checkmark
Invert Level (m)	61.465	Product Number	CTL-SHE-0041-1000-1700-1000
Design Depth (m)	1.700	Min Outlet Diameter (m)	0.075
Design Flow (I/s)	1.0	Min Node Diameter (mm)	1200

Node 31 Online Hydro-Brake® Control

Flap Valve	X	Objective	(HE) Minimise upstream storage
Replaces Downstream Link	Х	Sump Available	\checkmark
Invert Level (m)	62.330	Product Number	CTL-SHE-0041-1000-1767-1000
Design Depth (m)	1.767	Min Outlet Diameter (m)	0.075
Design Flow (I/s)	1.0	Min Node Diameter (mm)	1200

Node 29 Depth/Area Storage Structure

BRE-365: Volume (m³)	0.792	Base Inf Coefficient (m/hr)	0.37571	Invert Level (m)	61.800
BRE-365: Area (m²)	2.752	Side Inf Coefficient (m/hr)	0.37571	Time to half empty (mins)	0
BRE-365: Time (hrs)	0.766	Safety Factor	2.0		
BRE-365: Inf Coef (m/hr)	0.37571	Porosity	1.00		

Depth	Area	Inf Area	Depth	Area	Inf Area	Depth	Area	Inf Area
(m)	(m²)	(m²)	(m)	(m²)	(m²)	(m)	(m²)	(m²)
0.000	134.0	134.0	1.110	134.0	134.0	1.767	402.0	402.0

Node 10 Depth/Area Storage Structure

BRE-365: Volume (m³)	0.792	Base Inf Coefficient (m/hr)	0.37571	Invert Level (m)	56.780
BRE-365: Area (m²)	2.752	Side Inf Coefficient (m/hr)	0.00000	Time to half empty (mins)	
BRE-365: Time (hrs)	0.766	Safety Factor	2.0		
BRE-365: Inf Coef (m/hr)	0.37571	Porosity	1.00		

Depth	Area	Inf Area	Depth	Area	Inf Area	Depth	Area	Inf Area
(m)	(m²)	(m²)	(m)	(m²)	(m²)	(m)	(m²)	(m²)
0.000	110.0	110.0	2.000	110.0	110.0	2.100	0.0	110.0

File: Broomfield Midleton-RFI.; Network: Storm Network 1 George Forde 27/02/2024 Page 9 Residential Development Broomfield, Midleton, Co. Cork

Node 31 Depth/Area Storage Structure

BRE-365: Volume (m³) 0.792 BRE-365: Area (m²) 3.036 BRE-365: Time (hrs) 2.600 BRE-365: Inf Coef (m/hr) 0.10033 Base Inf Coefficient (m/hr) 0.10033 Side Inf Coefficient (m/hr) 0.10033 Safety Factor 2.0 Porosity 1.00

Invert Level (m) 62.330 Time to half empty (mins) 0

Depth	Area	Inf Area	Depth	Area	Inf Area	Depth	Area	Inf Area
(m)	(m²)	(m²)	(m)	(m²)	(m²)	(m)	(m²)	(m²)
0.000	92.0	92.0	1.100	92.0	92.0	1.767	276.0	276.0

Brian O'Kennedy and Associate File: Broomfield Midleton-RFI.; Shannon House Church Road Douglas, Cork

Network: Storm Network 1 George Forde 27/02/2024 Page 10 Residential Development Broomfield, Midleton, Co. Cork

Results for 5 year +10% CC Critical Storm Duration. Lowest mass balance: 99.80%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	S	Status
	Node		(m)	(m)	(I/s)	Vol (m³)	(m³)		
120 minute winter		94	62.982	0.028	1.3	0.0353	0.0000	OK	
120 minute winter		94	62.878	0.042	3.1	0.0552	0.0000	OK	
120 minute winter		94	62.608	0.077	9.9	0.1524	0.0000	OK	
120 minute winter	_	92	60.950	0.098	16.7	0.2014	0.0000	OK	
15 minute summer		1	59.186	0.000	0.0	0.0000	0.0000	OK	
120 minute winter		92	60.724	0.118	22.9	0.1888	0.0000	OK	
120 minute winter		92	60.303	0.140	31.4	0.3284	0.0000	OK	
15 minute summer		1	59.754	0.000	0.0	0.0000	0.0000	OK	
15 minute summer		1	65.313	0.000	0.0	0.0000	0.0000	OK	
120 minute winter		98	62.400	0.056	5.3	0.0791	0.0000	OK	
60 minute winter	14	64	61.043	0.049	5.8	0.0551	0.0000	OK	
60 minute winter	15	63	60.596	0.072	8.2	0.1077	0.0000	OK	
15 minute summer		1	62.577	0.000	0.0	0.0000	0.0000	OK	
60 minute winter	16	56	64.874	0.025	1.0	0.0332	0.0000	OK	
60 minute winter	17	59	64.749	0.042	2.8	0.0619	0.0000	OK	
60 minute winter	18	62	64.597	0.032	3.6	0.0416	0.0000	OK	
15 minute summer		1	63.623	0.000	0.0	0.0000	0.0000	OK	
15 minute summer		1	61.145	0.000	0.0	0.0000	0.0000	OK	
15 minute summer		1	59.230	0.000	0.0	0.0000	0.0000	OK	
120 minute winter		94	59.474	0.181	43.9	0.3422	0.0000	OK	
120 minute winter		94	59.442	0.170	45.8	0.2810	0.0000	OK	
360 minute winter	10	360	58.523	-0.728	31.8	191.7482	0.0000	OK	
120 minute winter	28	96	61.906	0.053	5.0	0.0793	0.0000	ОК	
120 minute winter	29	108	61.828	0.363	5.0	4.2606	0.0000	SUR	CHARGED
						_			
Link Event	US	Link	DS	Outflow		-	-	ink	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s	s)	Vol	(m³)	Discharge Vol (m³)
(Upstream Depth) 120 minute winter	Node 2	1.001	Node 3	(I/s) 1.3	(m/ : 3 0.3	s) 332 0.0	Vol 033 0.0	(m³) 0794	_
(Upstream Depth) 120 minute winter 120 minute winter	Node 2 3	1.001 1.002	Node 3 4	(I/s) 1.3 3.1	(m/s 3 0.3 L 0.3	s) 332 0.0 373 0.0	Vol 033 0.0 078 0.4	(m³) 0794 4428	_
(Upstream Depth) 120 minute winter 120 minute winter 120 minute winter	Node 2 3 4	1.001 1.002 1.003	Node 3 4 5	(I/s) 1.3 3.1 9.9	(m/s 3 0.3 1 0.3 0.8	s) 332 0. 373 0. 335 0.	Vol 033 0.0 078 0.0 249 0.0	(m³) 0794 4428 7355	_
(Upstream Depth) 120 minute winter 120 minute winter	Node 2 3	1.001 1.002	Node 3 4	(I/s) 1.3 3.1	(m/s 3 0.3 1 0.3 0.8	s) 332 0. 373 0. 335 0.	Vol 033 0.0 078 0.0 249 0.0	(m³) 0794 4428	_
(Upstream Depth) 120 minute winter 120 minute winter 120 minute winter	Node 2 3 4	1.001 1.002 1.003	Node 3 4 5	(I/s) 1.3 3.1 9.9	(m/s 0.3 0.3 0.8 0.8 0.7	(32 0.673 0.635 0.673 0.6734 0.6744 0.0744 0	Vol 033 0. 078 0. 249 0. 236 1.	(m³) 0794 4428 7355	_
(Upstream Depth) 120 minute winter 120 minute winter 120 minute winter 120 minute winter	Node 2 3 4 5	1.001 1.002 1.003 1.004	Node 3 4 5 6	(I/s) 1.3 3.1 9.9 16.7	(m/s 0.3 0.3 0.3 0.8 0.7 0.7	ss) 332 0. 373 0. 335 0. 334 0.	Vol 033 0. 078 0. 249 0. 236 1	(m³) 0794 4428 7355 3695	_
(Upstream Depth) 120 minute winter 120 minute winter 120 minute winter 120 minute winter	Node 2 3 4 5	1.001 1.002 1.003 1.004	Node 3 4 5 6	(I/s) 1.3 3.1 9.9 16.7	(m/s 0.3 0.3 0.8 0.7 0.7 0.9 0.9 1.0	ss) 332 0.0 373 0.1 335 0.1 334 0.1 304 0.1 392 0.1	Vol 033 0.0 078 0.2 249 0.2 236 1 323 2	(m³) 0794 4428 7355 3695	_
(Upstream Depth) 120 minute winter	Node 2 3 4 5 6 7	1.001 1.002 1.003 1.004 1.005 1.006	Node 3 4 5 6	(I/s) 1.3 3.1 9.9 16.7 22.9 31.4	(m/s 0.3 0.3 0.8 0.7 0.7 0.9 0.9 0.8 0.0	ss) 332 0.0 373 0.1 335 0.2 34 0.2 392 0.1 390 0.1	Vol 033 0.0 078 0.249 0.236 1 323 2 284 1	(m³) 0794 4428 7355 3695 2771 2422	_
(Upstream Depth) 120 minute winter	Node 2 3 4 5 6 7 19	1.001 1.002 1.003 1.004 1.005 1.006 8.000	Node 3 4 5 6 7 8	(I/s) 1.3 3.1 9.9 16.7 22.9 31.4	(m/s 0.3 0.3 0.8 0.7 0.7 0.7 0.9 0.9 0.0 0.0	ss) 332 0.0 373 0.1 335 0.1 34 0.1 392 0.1 392 0.1 390 0.1 390 0.1	Vol 033 0.0 078 0.2 249 0.2 236 1 323 2 284 1 000 0.0 000 0.0	(m³) 0794 4428 7355 3695 2771 2422 0000	_
(Upstream Depth) 120 minute winter 15 minute summer 15 minute summer	Node 2 3 4 5 6 7 19 12	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000	Node 3 4 5 6 7 8 8 13	(I/s) 1.3 3.1 9.9 16.7 22.9 31.4 0.0	(m/s 0.3 0.3 0.8 7 0.7 0.9 1 0.8 0.0 0.0 0.0 0.0	ss) 332	Vol 033 0.0 078 0.0 249 0.1 236 1.1 323 2.1 284 1.1 000 0.0 000 0.1 133 0.1	(m³) 0794 4428 7355 3695 2771 2422 0000 1588	_
(Upstream Depth) 120 minute winter 15 minute summer 15 minute summer 120 minute winter	Node 2 3 4 5 6 7 19 12 13	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003	Node 3 4 5 6 7 8 8 13 14	(I/s) 1.3 3.1 9.9 16.7 22.9 31.4 0.0 0.0 5.3	(m/s 0.3 0.3 0.8 0.7 0.7 0.9 0.9 0.0 0.0 0.0 0.0 0.3 0.6 0.3	ss) 332	Vol 033 0.0 078 0.2 249 0.3 236 1.3 323 2.3 284 1.3 000 0.3 000 0.3 133 0.3 100 0.3	(m³) 0794 4428 7355 3695 2771 2422 0000 1588 2877	_
(Upstream Depth) 120 minute winter 15 minute summer 15 minute summer 15 minute summer 16 minute winter	Node 2 3 4 5 6 7 19 12 13 14	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005	Node 3 4 5 6 7 8 8 13 14 15	(I/s) 1.3 3.1 9.9 16.7 22.9 31.4 0.0 0.0 5.3	(m/s 0.3 0.3 0.8 0.7 0.7 0.9 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ss) 332 0.4 373 0.4 335 0.2 34 0.2 392 0.2 390 0.6 397 0.6 359 0.6	Vol 033 0.0 078 0.2 249 0.3 236 1.3 323 2.3 284 1.3 000 0.3 000 0.1 133 0.1 100 0.1 116 0.	(m³) 0794 4428 7355 3695 2771 2422 0000 1588 2877 1976	_
(Upstream Depth) 120 minute winter 15 minute summer 15 minute summer 15 minute summer 160 minute winter 60 minute winter	Node 2 3 4 5 6 7 19 12 13 14 15	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005 5.006	Node 3 4 5 6 7 8 8 13 14 15 8	(I/s) 1.3 3.1 9.9 16.7 22.9 31.4 0.0 0.6 5.3 5.8	(m/s 0.3 0.3 0.8 7 0.7 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ss) 332 0.4 373 0.335 0.2 34 0.3 392 0.3 392 0.3 392 0.3 392 0.3 392 0.6 397 0.6 359 0.6 359 0.6 379 0.6 379 0.6 379 0.6	Vol 033 0.0 078 0.2 249 0.2 236 1 323 2 284 1 000 0 133 0 116 0 000 0 025 0	(m³) 0794 4428 7355 3695 2771 2422 0000 1588 2877 1976 1207	_
(Upstream Depth) 120 minute winter 15 minute summer 15 minute summer 120 minute winter 60 minute winter 60 minute winter	Node 2 3 4 5 6 7 19 12 13 14 15 30	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005 5.006 5.000	Node 3 4 5 6 7 8 8 13 14 15 8 31	(I/s) 1.3 3.1 9.9 16.7 22.9 31.4 0.0 5.3 5.8 8.2 0.0	(m/s 0.3 0.3 0.8 0.7 0.7 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ss) 332 0.4 335 0.3 34 0.3 392 0.4 392 0.6 397 0.6 397 0.6 359 0.6 359 0.6 379 0.6 379 0.6 379 0.6	Vol 033 0.0 078 0.2 249 0.2 236 1 323 2 284 1 000 0.0 000 0.1 133 0 116 0 000 0.0 025 0.0	(m³) 0794 4428 7355 3695 2771 2422 0000 1588 2877 1976 1207 0312	_
(Upstream Depth) 120 minute winter 15 minute summer 15 minute summer 120 minute winter 60 minute winter 60 minute winter 60 minute winter	Node 2 3 4 5 6 7 19 12 13 14 15 30 16	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005 5.006 5.000 6.000	Node 3 4 5 6 7 8 8 13 14 15 8 31 17	(I/s) 1.3 3.1 9.9 16.7 22.9 31.4 0.0 0.0 5.3 5.8 8.2 0.0 1.0	(m/s 0.3 0.3 0.8 0.7 0.7 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ss) 332 0.4 335 0.3 34 0.3 392 0.4 392 0.6 397 0.6 397 0.6 397 0.7 396 0.7 397 0.7 398 0.7 399 0.7 390	Vol 033 0.0 078 0.2 249 0.2 236 1 323 2 284 1 000 0 133 0 116 0 000 0 0005 0 0005 0 070 0	(m³) 0794 4428 7355 3695 2771 2422 0000 1588 2877 1976 1207 0312 0891	_
(Upstream Depth) 120 minute winter 15 minute summer 15 minute summer 15 minute summer 160 minute winter 60 minute winter 60 minute winter 60 minute winter 60 minute winter	Node 2 3 4 5 6 7 19 12 13 14 15 30 16 17	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005 5.006 5.000 6.000 6.001	Node 3 4 5 6 7 8 8 13 14 15 8 31 17 18 13 4	(I/s) 1.3 3.1 9.9 16.7 22.9 31.4 0.0 0.0 5.3 5.8 8.2 0.0 1.0 2.8	(m/s 0.3 0.3 0.8 0.7 0.7 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ss) 332	Vol 033 0.0 078 0.2 249 0.0 236 1 323 2 3284 1 000 0 133 0 116 0 000 0 016 0 0170 0 0170 0 0170 0 0170 0 0170 0 0170 0 0170 0 0170 0 0170 0 0170 0 0170 0 0170 0	(m³) 0794 4428 7355 3695 2771 2422 0000 1588 2877 1976 1207 0312 0891 1020	_
(Upstream Depth) 120 minute winter 15 minute summer 15 minute summer 160 minute winter 60 minute winter 15 minute summer 60 minute winter 15 minute summer 60 minute winter 15 minute summer 60 minute winter 60 minute winter 60 minute winter	Node 2 3 4 5 6 7 19 12 13 14 15 30 16 17 18	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005 5.006 5.000 6.000 6.001 6.002	Node 3 4 5 6 7 8 8 13 14 15 8 31 17 18 13	(I/s) 1.3 3.1 9.9 16.7 22.9 31.4 0.0 0.0 5.3 5.8 8.2 0.0 1.0 2.8 3.6 0.0 0.0	(m/s 3 0.3 4 0.8 7 0.7 9 0.9 4 0.8 0 0.0 0 0.0 3 0.6 3 0.6 0 0.2 3 0.6 5 1.0 0 0.0 0 0.0	ss) 332	Vol 033	(m³) 0794 4428 7355 3695 2771 2422 0000 1588 2877 1976 1207 0312 0891 1020 1525	Vol (m³)
(Upstream Depth) 120 minute winter 15 minute summer 15 minute summer 160 minute winter 60 minute winter 15 minute summer 60 minute winter 60 minute winter 60 minute winter 60 minute winter	Node 2 3 4 5 6 7 19 12 13 14 15 30 16 17 18 20	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005 5.006 5.000 6.000 6.001 6.002 3.000 4.000 1.010	Node 3 4 5 6 7 8 8 13 14 15 8 31 17 18 13 4 5 23	(I/s) 1.3 3.1 9.9 16.7 22.9 31.4 0.0 0.0 5.3 5.8 8.2 0.0 1.0 2.8 3.6 0.0 0.0 0.0	(m/s 3 0.3 4 0.8 7 0.7 9 0.9 4 0.8 0 0.0 0 0.0 3 0.6 3 0.9 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	ss) 332	Vol 033	(m³) 0794 4428 7355 3695 2771 2422 0000 1588 2877 1976 1207 0312 0891 1020 1525 0000	_
(Upstream Depth) 120 minute winter 15 minute summer 15 minute summer 10 minute winter 60 minute winter 15 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute winter 15 minute winter 15 minute summer 15 minute summer 15 minute summer 15 minute summer	Node 2 3 4 5 6 7 19 12 13 14 15 30 16 17 18 20 11 22 8	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005 5.006 5.000 6.000 6.001 6.002 3.000 4.000 1.010 1.007	Node 3 4 5 6 7 8 8 13 14 15 8 31 17 18 13 4 5 23 9	(I/s) 1.3 3.1 9.9 16.7 22.9 31.4 0.0 0.0 5.3 5.8 8.2 0.0 1.0 2.8 3.6 0.0 0.0 43.9	(m/s 3 0.3 4 0.8 7 0.7 9 0.9 4 0.8 0 0.0 0 0.0 3 0.6 3 0.6 0 0.2 3 0.6 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	ss) 332	Vol 033 0.0 078 0.2 249 0.2 236 1 323 2 284 1 000 0 000 0 133 0 116 0 000 0 025 0 070 0 042 0 000 0	(m³) 0794 4428 7355 3695 2771 2422 0000 1588 2877 1976 1207 0312 0891 1020 1525 0000 0000 4850	Vol (m³)
(Upstream Depth) 120 minute winter 15 minute summer 15 minute summer 10 minute winter 60 minute winter 60 minute winter 60 minute winter 15 minute summer 60 minute winter 15 minute summer	Node 2 3 4 5 6 7 19 12 13 14 15 30 16 17 18 20 11 22 8 9	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005 5.006 5.000 6.000 6.001 6.002 3.000 4.000 1.010 1.007 1.008	Node 3 4 5 6 7 8 8 13 14 15 8 31 17 18 13 4 5 23 9 10	(I/s) 1.3 3.1 9.9 16.7 22.9 31.4 0.0 0.0 5.3 5.8 8.2 0.0 1.0 2.8 3.6 0.0 0.0 43.9 45.8	(m/s 3 0.3 4 0.8 7 0.7 9 0.9 4 0.8 0 0.0 0 0.0 3 0.6 3 0.6 0 0.0 0 0.2 3 0.6 0 0.0 0 0.0 0 0.7 3 0.9	(332 0.4 0.335 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Vol 033 0.0 078 0.0 249 0.0 236 1.0 323 2.0 284 1.0 000 0.1 133 0.0 116 0.0 000 0.1 000 0.1 000 0.0 042 0.0 000 0.0 000 0.0 000 0.0 000 0.0 000 0.0 000 0.0 000 0.0 000 0.0 000 0.0 000 0.0 0.0 0000 0.0	(m³) 0794 4428 7355 3695 2771 2422 0000 1588 2877 1976 1207 0312 0891 1020 1525 0000 0000 4850 4093	Vol (m³)
(Upstream Depth) 120 minute winter 15 minute summer 15 minute summer 160 minute winter 60 minute winter 15 minute summer 60 minute winter 15 minute summer 15 minute summer 160 minute winter 15 minute summer 15 minute winter 100 minute winter	Node 2 3 4 5 6 7 19 12 13 14 15 30 16 17 18 20 11 22 8	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005 5.006 5.000 6.000 6.001 6.002 3.000 4.000 1.010 1.007 1.008 1.009	Node 3 4 5 6 7 8 8 13 14 15 8 31 17 18 13 4 5 23 9 10 22	(I/s) 1.3 3.1 9.9 16.7 22.9 31.4 0.0 0.0 5.3 5.8 8.2 0.0 1.0 2.8 3.6 0.0 0.0 43.9 45.8 0.0	(m/s 0.3 0.3 0.8 0.7 0.7 0.9 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(332 0.4 0.335 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Vol 033 0.0 078 0.0 249 0.0 236 1.0 323 2.0 284 1.0 000 0.1 133 0.0 116 0.0 000 0.1 000 0.1 000 0.0 042 0.0 000 0.0 000 0.0 000 0.0 000 0.0 000 0.0 000 0.0 000 0.0 000 0.0 000 0.0 000 0.0 0.0 0000 0.0	(m³) 0794 4428 7355 3695 2771 2422 0000 1588 2877 1976 1207 0312 0891 1020 1525 0000 0000 4850	Vol (m³)
(Upstream Depth) 120 minute winter 15 minute summer 15 minute summer 160 minute winter 60 minute winter 15 minute summer 15 minute summer 160 minute winter 15 minute summer 15 minute summer 15 minute winter 15 minute winter 15 minute summer 160 minute winter 170 minute winter	Node 2 3 4 5 6 7 19 12 13 14 15 30 16 17 18 20 11 22 8 9 10 10	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005 5.006 5.000 6.001 6.002 3.000 4.000 1.010 1.007 1.008 1.009 Infiltration	Node 3 4 5 6 7 8 8 13 14 15 8 31 17 18 13 4 5 23 9 10 22	(I/s) 1.3 3.1 9.9 16.7 22.9 31.4 0.0 0.0 5.3 5.8 8.2 0.0 1.0 2.8 3.6 0.0 0.0 43.9 45.8 0.0 5.7	(m/s 0.3 0.3 0.8 0.7 0.7 0.9 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(32 0.4 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Vol 033 0.0 078 0.2 249 0.0 236 1.0 323 2.0 328 1.0 000 0.0 000 0.1 116 0.0 000 0.1 116 0.0 002 000 0.0 000 0	(m³) 0794 4428 7355 3695 2771 2422 0000 1588 2877 1976 1207 0312 0891 1020 1525 0000 0000 0000 4850 4093 0000	Vol (m³)
(Upstream Depth) 120 minute winter 15 minute summer 15 minute summer 160 minute winter 60 minute winter 60 minute winter 60 minute summer 15 minute summer 15 minute summer 15 minute summer 15 minute winter 15 minute winter 10 minute winter 15 minute summer 15 minute summer 15 minute summer 15 minute summer 16 minute winter 17 minute summer 18 minute summer 19 minute winter 19 minute winter 10 minute winter 110 minute winter	Node 2 3 4 5 6 7 19 12 13 14 15 30 16 17 18 20 11 22 8 9 10 10 28	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005 5.006 5.000 6.001 6.002 3.000 4.000 1.010 1.007 1.008 1.009 Infiltration 5.003	Node 3 4 5 6 7 8 8 13 14 15 8 31 17 18 13 4 5 23 9 10 22	(I/s) 1.3 3.1 9.9 16.7 22.9 31.4 0.0 0.0 5.3 5.8 8.2 0.0 1.0 2.8 3.6 0.0 0.0 43.9 45.8 0.0 5.7 5.0	(m/s 3 0.3 4 0.3 6 0.8 7 0.7 9 0.9 1 0.8 0 0.0 0 0.0 3 0.6 3 0.6 0 0.0 0	s) (32 0.4 (373 0.4 (335 0.7 (34 0.7 (34 0.7 (392 0.7 (392 0.7 (399 0.7 (39	Vol 033	(m³) 0794 4428 7355 3695 2771 2422 0000 1588 2877 1976 1207 0312 0891 1020 1525 0000 0000 4850 4093 0000 5464	Vol (m³)
(Upstream Depth) 120 minute winter 15 minute summer 15 minute summer 160 minute winter 60 minute winter 15 minute summer 15 minute summer 160 minute winter 15 minute summer 15 minute summer 15 minute winter 15 minute winter 15 minute summer 160 minute winter 170 minute winter	Node 2 3 4 5 6 7 19 12 13 14 15 30 16 17 18 20 11 22 8 9 10 10	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005 5.006 5.000 6.001 6.002 3.000 4.000 1.010 1.007 1.008 1.009 Infiltration	Node 3 4 5 6 7 8 8 13 14 15 8 31 17 18 13 4 5 23 9 10 22	(I/s) 1.3 3.1 9.9 16.7 22.9 31.4 0.0 0.0 5.3 5.8 8.2 0.0 1.0 2.8 3.6 0.0 0.0 43.9 45.8 0.0 5.7	(m/s 3 0.3 1 0.3 2 0.8 7 0.7 9 0.9 1 0.8 0 0.0 0 0.0 3 0.6 3 0.9 0 0.0 0	s) (32 0.4 (373 0.4 (335 0.7 (34 0.7 (34 0.7 (392 0.7 (392 0.7 (399 0.7 (39	Vol 033	(m³) 0794 4428 7355 3695 2771 2422 0000 1588 2877 1976 1207 0312 0891 1020 1525 0000 0000 0000 4850 4093 0000	Vol (m³)

File: Broomfield Midleton-RFI.; Network: Storm Network 1 George Forde 27/02/2024 Page 11 Residential Development Broomfield, Midleton, Co. Cork

Results for 5 year +10% CC Critical Storm Duration. Lowest mass balance: 99.80%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
120 minute winter	31	118	62.363	0.033	1.5	3.0527	0.0000	OK
120 minute winter	27	100	62.202	0.027	1.2	0.0326	0.0000	ОК
30 minute summer	24	37	55.397	0.009	0.2	0.0104	0.0000	OK
60 minute winter	25	57	54.742	0.015	1.1	0.0197	0.0000	OK
60 minute winter	26	57	54.220	0.015	1.1	0.0000	0.0000	OK
15 minute summer	21	1	64.688	0.000	0.0	0.0000	0.0000	OK
15 minute summer	1	1	63.190	0.000	0.0	0.0000	0.0000	OK

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
120 minute winter	29	Infiltration		3.9				
120 minute winter	31	5.001	27	0.2	0.158	0.004	0.0419	
120 minute winter	31	Infiltration		0.8				
120 minute winter	27	5.002	28	1.2	0.256	0.030	0.2687	
30 minute summer	24	9.000	25	0.2	0.286	0.003	0.0262	
60 minute winter	25	9.001	26	1.1	0.991	0.008	0.0093	4.0
15 minute summer	21	2.000	3	0.0	0.000	0.000	0.0000	
15 minute summer	1	1.000	2	0.0	0.000	0.000	0.0363	

File: Broomfield Midleton-RFI.; Network: Storm Network 1 George Forde 27/02/2024 Page 12 Residential Development Broomfield, Midleton, Co. Cork

Results for 10 year +10% CC Critical Storm Duration. Lowest mass balance: 99.80%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	9	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)		
60 minute winter	2	64	62.984	0.030	1.5	0.0378	0.0000	OK	
120 minute winter	3	94	62.881	0.045	3.6	0.0594	0.0000	OK	
120 minute winter	4	92	62.614	0.083	11.5	0.1651	0.0000	OK	
120 minute winter	5	90	60.958	0.106	19.4	0.2175	0.0000	OK	
360 minute winter	23	344	59.217	0.031	2.3	0.0000	0.0000	OK	
120 minute winter	6	92	60.734	0.128	26.5	0.2049	0.0000	OK	
120 minute winter	7	92	60.315	0.152	36.3	0.3559	0.0000	OK	
15 minute summer	r 19	1	59.754	0.000	0.0	0.0000	0.0000	OK	
15 minute summer	12	1	65.313	0.000	0.0	0.0000	0.0000	OK	
120 minute winter	13	96	62.404	0.061	6.2	0.0858	0.0000	OK	
60 minute winter	14	64	61.047	0.052	6.7	0.0593	0.0000	OK	
120 minute winter	15	92	60.602	0.078	9.5	0.1162	0.0000	OK	
15 minute summer	r 30	1	62.577	0.000	0.0	0.0000	0.0000	OK	
60 minute winter	16	60	64.876	0.027	1.2	0.0362	0.0000	OK	
60 minute winter	17	59	64.753	0.046	3.3	0.0671	0.0000	OK	
60 minute winter	18	63	64.599	0.034	4.2	0.0449	0.0000	OK	
15 minute summer	r 20	1	63.623	0.000	0.0	0.0000	0.0000	OK	
15 minute summer	r 11	1	61.145	0.000	0.0	0.0000	0.0000	OK	
360 minute winter	22	344	59.327	0.097	2.3	0.2467	0.0000	OK	
120 minute winter	8	92	59.489	0.196	50.7	0.3713	0.0000	OK	
120 minute winter	9	92	59.456	0.184	52.9	0.3039	0.0000	OK	
360 minute winter	10	344	59.327	0.076	36.2	225.6957	0.0000	OK	
120 minute winter	28	96	61.911	0.058	5.8	0.0856	0.0000	OK	
120 minute winter	29	108	61.834	0.369	5.8	4.9924	0.0000	SUR	CHARGED
Link Event	US	Link	DS	Outflow	Veloc	ity Flow/	Cap L	ink	Discharge
Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Veloc (m/s	-	-	ink (m³)	Discharge Vol (m³)
		Link 1.001			(m/	s)	Vol		_
(Upstream Depth)	Node		Node	(I/s)	(m/ : 0.3	s) 349 0.	Vo l 038 0.	(m³)	_
(Upstream Depth) 60 minute winter	Node 2	1.001	Node 3	(I/s) 1.5	(m/ 9 0.3 0.3	s) 349 0. 387 0.	Vol 038 0. 090 0.	(m³) 0879	_
(Upstream Depth) 60 minute winter 120 minute winter	Node 2 3	1.001 1.002	Node 3 4	(I/s) 1.5 3.6	(m/s 0.3 0.3 0.8	s) 349 0. 387 0. 370 0.	Vol 038 0. 090 0. 289 0.	(m³) 0879 4934	_
(Upstream Depth) 60 minute winter 120 minute winter 120 minute winter	Node 2 3 4	1.001 1.002 1.003	Node 3 4 5	(I/s) 1.5 3.6 11.5	(m/s 0.3 0.3 0.8	s) 349 0. 387 0. 370 0.	Vol 038 0. 090 0. 289 0.	(m³) 0879 4934 8200	_
(Upstream Depth) 60 minute winter 120 minute winter 120 minute winter	Node 2 3 4	1.001 1.002 1.003	Node 3 4 5	(I/s) 1.5 3.6 11.5	(m/s 0.3 0.3 0.8 0.7	s) 449 0. 887 0. 870 0. 763 0.	Vol 038 0. 090 0. 289 0. 273 1.	(m³) 0879 4934 8200	_
(Upstream Depth) 60 minute winter 120 minute winter 120 minute winter 120 minute winter	Node 2 3 4 5	1.001 1.002 1.003 1.004	Node 3 4 5 6	(I/s) 1.5 3.6 11.5 19.3	(m/s 0.3 0.3 0.8 0.7	ss) 449 0. 887 0. 870 0. 63 0.	Vol 038 0. 090 0. 289 0. 273 1.	(m³) 0879 4934 8200 5247	_
(Upstream Depth) 60 minute winter 120 minute winter 120 minute winter 120 minute winter	Node 2 3 4 5	1.001 1.002 1.003 1.004	Node 3 4 5 6	(I/s) 1.5 3.6 11.5 19.3 26.5	(m/s 0.3 0.8 0.7 0.9	ss) 449 0. 887 0. 870 0. 763 0. 942 0. 928 0.	Vol 038 0. 090 0. 289 0. 273 1. 374 2. 328 1.	(m³) 0879 4934 8200 5247	_
(Upstream Depth) 60 minute winter 120 minute winter 120 minute winter 120 minute winter 120 minute winter	Node 2 3 4 5 6 7	1.001 1.002 1.003 1.004 1.005 1.006	Node 3 4 5 6	(I/s) 1.5 3.6 11.5 19.3 26.5 36.3	(m/s 0.3 0.8 0.7 0.9 0.9	ss) 449 0. 887 0. 870 0. 763 0. 942 0. 928 0. 900 0.	Vol 038 0. 090 0. 289 0. 273 1. 374 2. 328 1. 000 0.	(m³) 0879 4934 8200 5247 5300 3806	_
(Upstream Depth) 60 minute winter 120 minute winter 130 minute winter	Node 2 3 4 5 6 7 19	1.001 1.002 1.003 1.004 1.005 1.006 8.000	Node 3 4 5 6 7 8 8	(I/s) 1.5 3.6 11.5 19.3 26.5 36.3 0.0	(m/s 0.3 0.8 0.7 0.9 0.9 0.0	ss) 449 0. 887 0. 870 0. 763 0. 942 0. 928 0. 900 0.	Vol 038 0. 090 0. 289 0. 273 1. 374 2. 328 1. 000 0. 000 0.	(m³) 0879 4934 8200 5247 5300 3806 0000	_
(Upstream Depth) 60 minute winter 120 minute winter 15 minute summer 15 minute summer	Node 2 3 4 5 6 7 19 12	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000	Node 3 4 5 6 7 8 8 13	(I/s) 1.5 3.6 11.5 19.3 26.5 36.3 0.0	(m/s 0.3 0.8 0.7 0.9 0.9 0.0 0.0	ss) 449 0. 887 0. 870 0. 630 0. 642 0. 628 0. 600 0. 629 0.	Vol 038 0. 090 0. 289 0. 273 1. 374 2. 328 1. 000 0. 000 0.	(m³) 0879 4934 8200 5247 5300 3806 0000 1791	_
(Upstream Depth) 60 minute winter 120 minute winter 15 minute summer 15 minute summer 120 minute winter	Node 2 3 4 5 6 7 19 12 13	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003	Node 3 4 5 6 7 8 8 13 14	(I/s) 1.5 3.6 11.5 19.3 26.5 36.3 0.0 0.0 6.2	(m/s 0.3 0.8 0.7 0.9 0.9 0.0 0.0 0.7 0.9	ss) 449 0. 887 0. 870 0. 763 0. 942 0. 928 0. 900 0. 900 0. 929 0.	Vol 038 0. 090 0. 289 0. 273 1. 374 2. 328 1. 000 0. 000 0. 156 0. 116 0.	(m³) 0879 4934 8200 5247 5300 3806 0000 1791 3219	_
(Upstream Depth) 60 minute winter 120 minute winter 15 minute summer 15 minute summer 15 minute summer 16 minute winter	Node 2 3 4 5 6 7 19 12 13 14	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005	Node 3 4 5 6 7 8 8 13 14 15	(I/s) 1.5 3.6 11.5 19.3 26.5 36.3 0.0 0.0 6.2 6.7	(m/s 0.3 0.8 0.7 0.9 0.0 0.0 0.7 0.9	ss) 449 0. 887 0. 870 0. 763 0. 942 0. 928 0. 900 0. 900 0. 929 0. 975 0. 985 0.	Vol 038 0. 090 0. 289 0. 273 1. 374 2. 328 1. 000 0. 000 0. 156 0. 116 0.	(m³) 0879 4934 8200 5247 5300 3806 0000 1791 3219 2189	_
(Upstream Depth) 60 minute winter 120 minute winter 15 minute summer 15 minute summer 15 minute summer 160 minute winter 120 minute winter	Node 2 3 4 5 6 7 19 12 13 14 15	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005 5.006	Node 3 4 5 6 7 8 8 13 14 15 8	(I/s) 1.5 3.6 11.5 19.3 26.5 36.3 0.0 6.2 6.7 9.5	(m/s 0.3 0.8 0.7 0.9 0.0 0.0 0.7 0.9 0.6 0.0	(a) (b) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a	Vol 038 0.090 0.289 0.273 1. 374 2. 328 1. 000 0. 000 0.156 0. 116 0. 134 0. 000 0.	(m³) 0879 4934 8200 5247 5300 3806 0000 1791 3219 2189 1342	_
(Upstream Depth) 60 minute winter 120 minute winter 15 minute summer 15 minute summer 120 minute winter 120 minute winter 130 minute winter 140 minute winter 150 minute winter 150 minute winter	Node 2 3 4 5 6 7 19 12 13 14 15 30	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005 5.006 5.000	Node 3 4 5 6 7 8 8 13 14 15 8 31	(I/s) 1.5 3.6 11.5 19.3 26.5 36.3 0.0 0.0 6.2 6.7 9.5	(m/s 0.3 0.8 0.7 0.9 0.0 0.0 0.7 0.9 0.6 0.0	ss) 449 0. 487 0. 470 0. 463 0. 442 0. 428 0. 400 0. 429 0. 475 0. 485 0. 497 0.	Vol 038 0. 090 0. 289 0. 273 1. 374 2. 328 1. 000 0. 000 0. 156 0. 116 0. 134 0. 000 0. 030 0.	(m³) 0879 4934 8200 5247 5300 3806 0000 1791 3219 2189 1342 0368	_
(Upstream Depth) 60 minute winter 120 minute winter 15 minute summer 15 minute summer 120 minute winter 120 minute winter 15 minute winter 160 minute winter 15 minute summer	Node 2 3 4 5 6 7 19 12 13 14 15 30 16	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005 5.006 5.000 6.000	Node 3 4 5 6 7 8 8 13 14 15 8 31 17	(I/s) 1.5 3.6 11.5 19.3 26.5 36.3 0.0 0.0 6.2 6.7 9.5 0.0 1.2	(m/s 0.3 0.8 0.7 0.9 0.0 0.0 0.7 0.9 0.6 0.0 0.2	ss) 449 0. 487 0. 763 0. 763 0. 763 0. 763 0. 763 0. 763 0. 765 0. 765 0. 765 0. 765 0. 765 0.	Vol 038 0. 090 0. 289 0. 273 1. 374 2. 328 1. 000 0. 156 0. 116 0. 134 0. 000 0. 030 0. 083 0.	(m³) 0879 4934 8200 5247 5300 3806 0000 1791 3219 2189 1342 0368 1005	_
(Upstream Depth) 60 minute winter 120 minute winter 15 minute summer 15 minute summer 120 minute winter 120 minute winter 15 minute summer 160 minute winter 160 minute winter 60 minute winter	Node 2 3 4 5 6 7 19 12 13 14 15 30 16 17	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005 5.006 5.000 6.000 6.001	Node 3 4 5 6 7 8 8 13 14 15 8 31 17 18	(I/s) 1.5 3.6 11.5 19.3 26.5 36.3 0.0 0.0 6.2 6.7 9.5 0.0 1.2 3.3	(m/s 0.3 0.8 0.7 0.9 0.0 0.0 0.7 0.9 0.6 0.0 0.2 0.6 1.1	(a) (b) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a	Vol 038 0. 090 0. 289 0. 273 1. 374 2. 328 1. 000 0. 156 0. 116 0. 134 0. 000 0. 030 0. 030 0. 083 0. 050 0.	(m³) 0879 4934 8200 5247 5300 3806 0000 1791 3219 2189 1342 0368 1005 1142	_
(Upstream Depth) 60 minute winter 120 minute winter 15 minute summer 15 minute summer 120 minute winter 60 minute winter 15 minute winter 60 minute winter 60 minute winter 60 minute winter	Node 2 3 4 5 6 7 19 12 13 14 15 30 16 17 18	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005 5.006 5.000 6.000 6.001 6.002	Node 3 4 5 6 7 8 8 13 14 15 8 31 17 18 13	(I/s) 1.5 3.6 11.5 19.3 26.5 36.3 0.0 0.0 6.2 6.7 9.5 0.0 1.2 3.3 4.2 0.0 0.0	(m/s 0.3 0.3 0.8 0.7 0.9 0.0 0.7 0.9 0.6 0.0 0.2 0.6 1.1 0.0	(a) (b) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a	Vol 038 0. 090 0. 289 0. 273 1. 374 2. 328 1. 000 0. 000 0. 156 0. 116 0. 134 0. 000 0. 030 0. 083 0. 050 0. 000 0.	(m³) 0879 4934 8200 5247 5300 3806 0000 1791 3219 2189 1342 0368 1005 1142 1699	_
(Upstream Depth) 60 minute winter 120 minute winter 15 minute summer 15 minute summer 120 minute winter 60 minute winter 15 minute winter 16 minute winter 60 minute winter 60 minute winter 60 minute winter	Node 2 3 4 5 6 7 19 12 13 14 15 30 16 17 18 20	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005 5.006 5.000 6.000 6.001 6.002 3.000	Node 3 4 5 6 7 8 8 13 14 15 8 31 17 18 13 4	(I/s) 1.5 3.6 11.5 19.3 26.5 36.3 0.0 0.0 6.2 6.7 9.5 0.0 1.2 3.3 4.2 0.0	(m/s 0.3 0.3 0.8 0.7 0.9 0.0 0.7 0.9 0.6 0.0 0.2 0.6 1.1 0.0	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	Vol 038 0.090 0.289 0.273 1. 374 2. 328 1. 000 0. 000 0. 156 0. 116 0. 134 0. 000 0. 030 0. 030 0. 083 0. 050 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 000 0. 0000 0.	(m³) 0879 4934 8200 5247 5300 3806 0000 1791 3219 2189 1342 0368 1005 1142 1699 0000	_
(Upstream Depth) 60 minute winter 120 minute winter 15 minute summer 15 minute summer 120 minute winter 60 minute winter 15 minute summer 60 minute winter 60 minute winter 60 minute winter 60 minute winter 61 minute summer 61 minute winter	Node 2 3 4 5 6 7 19 12 13 14 15 30 16 17 18 20 11	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005 5.006 5.000 6.000 6.001 6.002 3.000 4.000	Node 3 4 5 6 7 8 8 13 14 15 8 31 17 18 13 4 5	(I/s) 1.5 3.6 11.5 19.3 26.5 36.3 0.0 0.0 6.2 6.7 9.5 0.0 1.2 3.3 4.2 0.0 0.0	(m/s 0.3 0.8 0.7 0.9 0.0 0.0 0.7 0.9 0.6 0.0 0.2 0.6 1.1 0.0 0.4	ss) 449 0. 487 0. 887 0. 870 0. 763 0. 763 0. 763 0. 763 0. 763 0. 763 0. 763 0. 763 0. 765 0. 765 0. 765 0. 769 0. 769 0. 769 0. 769 0. 769 0. 769 0. 769 0. 769 0. 769 0. 769 0. 769 0. 769 0. 769 0. 769 0. 769 0. 769 0.	Vol 038 0.090 0.289 0.273 1. 374 2. 328 1. 000 0. 0156 0. 116 0. 134 0. 000 0. 030 0. 030 0. 030 0. 050 0. 000 0. 050 0. 000 0. 050 0. 000 0. 050 0.	(m³) 0879 4934 8200 5247 5300 3806 0000 1791 3219 2189 1342 0368 1005 1142 1699 0000 0000	Vol (m³)
(Upstream Depth) 60 minute winter 120 minute winter 15 minute summer 15 minute summer 120 minute winter 10 minute winter 15 minute summer 16 minute winter 15 minute summer 15 minute summer 15 minute summer 16 minute winter 15 minute summer 15 minute summer 15 minute summer 15 minute summer	Node 2 3 4 5 6 7 19 12 13 14 15 30 16 17 18 20 11 22	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005 5.006 5.000 6.000 6.001 6.002 3.000 4.000 1.010	Node 3 4 5 6 7 8 8 13 14 15 8 31 17 18 13 4 5 23	(I/s) 1.5 3.6 11.5 19.3 26.5 36.3 0.0 0.0 6.2 6.7 9.5 0.0 1.2 3.3 4.2 0.0 0.0 2.3	(m/s 0.3 0.8 0.7 0.9 0.0 0.0 0.7 0.9 0.6 0.0 0.2 0.6 1.1 0.0 0.4 0.7	s) 449 0. 487 0. 887 0. 670 0. 663 0. 642 0. 628 0. 600 0. 629 0. 675 0. 685 0. 697 0. 698 0. 613 0. 600 0. 611 0. 699 0.	Vol 038 0.090 0.289 0.273 1.374 2.328 1.000 0.000 0.156 0.116 0.134 0.000 0.330 0.0030 0.0030 0.0000 0.000	(m³) 0879 4934 8200 5247 5300 3806 0000 1791 3219 2189 1342 0368 1005 1142 1699 0000 0000 0998	Vol (m³)
(Upstream Depth) 60 minute winter 120 minute winter 15 minute summer 15 minute summer 120 minute winter 10 minute winter 110 minute winter 15 minute summer 15 minute summer 16 minute winter 15 minute summer 16 minute winter 15 minute winter 15 minute summer	Node 2 3 4 5 6 7 19 12 13 14 15 30 16 17 18 20 11 22 8	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005 5.006 5.000 6.000 6.001 6.002 3.000 4.000 1.010 1.007	Node 3 4 5 6 7 8 8 13 14 15 8 31 17 18 13 4 5 23 9	(I/s) 1.5 3.6 11.5 19.3 26.5 36.3 0.0 0.0 6.2 6.7 9.5 0.0 1.2 3.3 4.2 0.0 0.0 2.3 50.7	(m/s 0.3 0.8 0.7 0.9 0.0 0.0 0.7 0.9 0.6 0.0 0.2 0.6 1.1 0.0 0.4 0.7	(a) (b) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a	Vol 038 0.090 0.289 0.273 1. 374 2. 328 1. 000 0.000 0.156 0.16 0.134 0.000 0.0030 0.0030 0.0030 0.0030 0.0000 0.0000 0.0015 0.0000 0.0015 0	(m³) 0879 4934 8200 5247 5300 3806 0000 1791 3219 2189 1342 0368 1005 1142 1699 0000 0998 5396	Vol (m³)
(Upstream Depth) 60 minute winter 120 minute winter 15 minute summer 15 minute summer 120 minute winter 120 minute winter 160 minute winter 15 minute summer 60 minute winter 15 minute summer 60 minute winter 15 minute summer 15 minute winter 15 minute winter 15 minute winter 15 minute summer	Node 2 3 4 5 6 7 19 12 13 14 15 30 16 17 18 20 11 22 8 9	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005 5.006 5.000 6.000 6.001 6.002 3.000 4.000 1.010 1.007 1.008	Node 3 4 5 6 7 8 8 13 14 15 8 31 17 18 13 4 5 23 9 10 22	(I/s) 1.5 3.6 11.5 19.3 26.5 36.3 0.0 0.0 6.2 6.7 9.5 0.0 1.2 3.3 4.2 0.0 0.0 2.3 50.7 52.9	(m/s 0.3 0.3 0.8 0.7 0.9 0.0 0.7 0.9 0.6 0.0 0.2 0.6 1.1 0.0 0.4 0.7 0.9	(a) (b) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a	Vol 038 0.090 0.289 0.273 1. 374 2. 328 1. 000 0.000 0.156 0.16 0.134 0.000 0.0030 0.0030 0.0030 0.0030 0.0000 0.0000 0.0015 0.0000 0.0015 0	(m³) 0879 4934 8200 5247 5300 3806 0000 1791 3219 2189 1342 0368 1005 1142 1699 0000 0000 0998 5396 4545	Vol (m³)
(Upstream Depth) 60 minute winter 120 minute winter 15 minute summer 15 minute summer 120 minute winter 60 minute winter 15 minute summer 60 minute winter 15 minute summer 60 minute winter 15 minute summer 60 minute winter 15 minute winter 15 minute winter 15 minute summer 160 minute winter 170 minute winter	Node 2 3 4 5 6 7 19 12 13 14 15 30 16 17 18 20 11 22 8 9 10	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005 5.006 5.000 6.001 6.002 3.000 4.000 1.010 1.007 1.008 1.009	Node 3 4 5 6 7 8 8 13 14 15 8 31 17 18 13 4 5 23 9 10 22	(I/s) 1.5 3.6 11.5 19.3 26.5 36.3 0.0 0.0 6.2 6.7 9.5 0.0 1.2 3.3 4.2 0.0 0.0 2.3 50.7 52.9 2.3	(m/s 0.3 0.3 0.8 0.7 0.9 0.0 0.0 0.7 0.9 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	Vol 038 0.0 090 0.289 0.273 1. 374 2. 328 1. 000 0.0 000 0.156 0. 116 0. 134 0. 000 0. 030 0. 030 0. 050 0.	(m³) 0879 4934 8200 5247 5300 3806 0000 1791 3219 2189 1342 0368 1005 1142 1699 0000 0000 0998 5396 4545	Vol (m³)
(Upstream Depth) 60 minute winter 120 minute winter 15 minute summer 15 minute summer 10 minute winter 10 minute winter 10 minute winter 15 minute summer 15 minute winter 15 minute winter 15 minute winter 10 minute winter 15 minute summer 15 minute summer 15 minute summer 16 minute winter 17 minute winter 18 minute winter 19 minute winter 19 minute winter 10 minute winter	Node 2 3 4 5 6 7 19 12 13 14 15 30 16 17 18 20 11 22 8 9 10 10	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005 5.006 5.000 6.001 6.002 3.000 4.000 1.010 1.007 1.008 1.009 Infiltration	Node 3 4 5 6 7 8 8 13 14 15 8 31 17 18 13 4 5 23 9 10 22	(I/s) 1.5 3.6 11.5 19.3 26.5 36.3 0.0 0.0 6.2 6.7 9.5 0.0 1.2 3.3 4.2 0.0 0.0 2.3 50.7 52.9 2.3 5.7	(m/s 0.3 0.3 0.8 0.7 0.9 0.0 0.7 0.9 0.6 0.0 0.2 0.6 1.1 0.0 0.4 0.7 0.9	(a) (b) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a	Vol 038 0.0 090 0.289 0.273 1. 374 2. 328 1. 000 0.0 000 0.156 0. 116 0. 134 0. 0030 0. 030 0. 030 0. 030 0. 030 0. 030 0. 031 0. 030 0. 040 0. 040 0. 050 0. 061 0. 061 0. 071	(m³) 0879 4934 8200 5247 5300 3806 0000 1791 3219 2189 1342 0368 1005 1142 1699 0000 0000 0998 5396 4545 1777	Vol (m³)

File: Broomfield Midleton-RFI.; Network: Storm Network 1 George Forde 27/02/2024 Page 13 Residential Development Broomfield, Midleton, Co. Cork

Results for 10 year +10% CC Critical Storm Duration. Lowest mass balance: 99.80%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
120 minute winter	31	120	62.367	0.037	1.7	3.4751	0.0000	OK
120 minute winter	27	96	62.204	0.029	1.4	0.0353	0.0000	ОК
60 minute winter	24	56	55.399	0.011	0.3	0.0125	0.0000	OK
60 minute winter	25	56	54.743	0.016	1.3	0.0212	0.0000	OK
60 minute winter	26	58	54.221	0.016	1.3	0.0000	0.0000	OK
15 minute summer	21	1	64.688	0.000	0.0	0.0000	0.0000	OK
15 minute summer	1	1	63.190	0.000	0.0	0.0000	0.0000	OK

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
120 minute winter	29	Infiltration		4.7				
120 minute winter	31	5.001	27	0.2	0.174	0.005	0.0467	
120 minute winter	31	Infiltration		1.0				
120 minute winter	27	5.002	28	1.4	0.267	0.036	0.3004	
60 minute winter	24	9.000	25	0.3	0.322	0.004	0.0361	
60 minute winter	25	9.001	26	1.3	1.042	0.010	0.0105	4.7
15 minute summer	21	2.000	3	0.0	0.000	0.000	0.0000	
15 minute summer	1	1.000	2	0.0	0.000	0.000	0.0398	

File: Broomfield Midleton-RFI.; Network: Storm Network 1 George Forde 27/02/2024 Page 14 Residential Development Broomfield, Midleton, Co. Cork

Results for 30 year +10% CC Critical Storm Duration. Lowest mass balance: 99.80%

Node Event	US	Peak	Level	•	Inflow	Node	Flood	Status
60 minute winter	Node 2	e (mins) 64	(m) 62.987	(m) 0.033	(I/s) 1.9	Vol (m³)	(m³) 0.0000	OV
						0.0423		OK
120 minute winter 120 minute winter		92 92	62.887 62.626	0.051	4.6 14.5	0.0670	0.0000	OK OK
				0.095		0.1877		
60 minute winter 240 minute winter	5 23	61 208	60.972 59.279	0.120	24.4 18.9	0.2462 0.0000	0.0000	OK OK
				0.093				
120 minute winter		92	60.752	0.146	33.3	0.2343	0.0000	OK
120 minute winter		92	60.336	0.173	45.6	0.4050	0.0000	OK
240 minute winter		204	60.117	0.363	1.9	0.4103	0.0000	SURCHARGED
15 minute summer		1 96	65.313	0.000	0.0	0.0000	0.0000	OK
120 minute winter			62.412	0.068	7.7	0.0960	0.0000	OK
60 minute winter	14 15	61 61	61.053	0.058	8.2	0.0657	0.0000	OK
60 minute winter	15	61	60.611	0.087	11.7	0.1297	0.0000	OK
15 minute summer		1	62.577	0.000	0.0	0.0000	0.0000	OK
60 minute winter 60 minute winter	16	59 56	64.879	0.030	1.5	0.0402	0.0000	OK
	17	56 60	64.758	0.051	4.1	0.0747	0.0000	OK
60 minute winter	18	60	64.603	0.038	5.2	0.0499		OK
15 minute summe		1	63.623	0.000	0.0	0.0000	0.0000	OK
15 minute summer		1	61.145	0.000	0.0	0.0000	0.0000	OK
240 minute winter		204	60.111	0.881	21.0	2.2426	0.0000	SURCHARGED
240 minute winter		204	60.114	0.821	53.1	1.5553	0.0000	SURCHARGED
240 minute winter		204	60.113	0.841	55.4	1.3927	0.0000	SURCHARGED
240 minute winter		204	60.112	0.861	55.4	227.6917	0.0000	SURCHARGED
120 minute winter		92	61.918	0.065	7.4	0.0964	0.0000	OK
120 minute winter	29	108	61.844	0.379	7.4	6.3433	0.0000	SURCHARGED
Link Event	US	Link	DS	Outflow		•	•	ink Discharge
(Upstream Depth)	US Node		Node	(I/s)	(m/s	s)	Vol	(m³) Vol (m³)
(Upstream Depth) 60 minute winter	Node 2	1.001		(I/s) 1.9	(m/s 0.3	s) 72 0.	Vol 048 0.	(m³) Vol (m³) 1043
(Upstream Depth) 60 minute winter 120 minute winter	Node 2 3	1.001 1.002	Node 3 4	(I/s) 1.9 4.6	(m/s 0.3 0.4	5) 72 0.0 13 0.	. Vol 048 0. 116 0.	(m³) Vol (m³) 1043 5862
(Upstream Depth) 60 minute winter 120 minute winter 120 minute winter	Node 2	1.001 1.002 1.003	Node 3 4 5	(I/s) 1.9	(m/s 0.3 0.4 0.9	5) 72 0.1 13 0.25 0.1	Vol 048 0. 116 0. 364 0.	(m³) Vol (m³) 1043 5862 9722
(Upstream Depth) 60 minute winter 120 minute winter	Node 2 3	1.001 1.002	Node 3 4	(I/s) 1.9 4.6	(m/s 0.3 0.4 0.9	5) 72 0.1 13 0.25 0.1	Vol 048 0. 116 0. 364 0.	(m³) Vol (m³) 1043 5862
(Upstream Depth) 60 minute winter 120 minute winter 120 minute winter	Node 2 3 4	1.001 1.002 1.003	Node 3 4 5	(I/s) 1.9 4.6 14.5	(m/s 0.3 0.4 0.9 0.8	72 0.13 0.25 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.1	Vol 048 0. 116 0. 364 0. 344 1.	(m³) Vol (m³) 1043 5862 9722
(Upstream Depth) 60 minute winter 120 minute winter 120 minute winter 60 minute winter	Node 2 3 4 5	1.001 1.002 1.003 1.004	Node 3 4 5 6	(I/s) 1.9 4.6 14.5 24.4	(m/s 0.3 0.4 0.9 0.8 1.0	72 0.13 0.25 0.109 0.1000 0.10	Vol 048 0. 116 0. 364 0. 344 1.	(m³) Vol (m³) 1043 5862 9722 8093
(Upstream Depth) 60 minute winter 120 minute winter 120 minute winter 60 minute winter	Node 2 3 4 5	1.001 1.002 1.003 1.004	Node 3 4 5 6	(I/s) 1.9 4.6 14.5 24.4	(m/s 0.3 0.4 0.9 0.8 1.0 0.9	72 0.13 0.25 0.109 0.109 0.108	Vol 048 0. 116 0. 364 0. 344 1. 471 2. 412 1.	(m³) Vol (m³) 1043 5862 9722 8093
(Upstream Depth) 60 minute winter 120 minute winter 120 minute winter 60 minute winter 120 minute winter	Node 2 3 4 5 6 7	1.001 1.002 1.003 1.004 1.005 1.006	Node 3 4 5 6	(I/s) 1.9 4.6 14.5 24.4 33.3 45.6	(m/s 0.3 0.4 0.9 0.8 1.0 0.9 0.9	5) 72 0.1 13 0.25 0.1 09 0.1 03 0.88 0.75 0.1	Vol 048 0. 116 0. 364 0. 344 1. 471 2. 471 1. 056 1.	(m³) Vol (m³) 1043 5862 9722 8093 9870 6293
(Upstream Depth) 60 minute winter 120 minute winter 120 minute winter 60 minute winter 120 minute winter 120 minute winter 120 minute winter	Node 2 3 4 5 6 7 19	1.001 1.002 1.003 1.004 1.005 1.006 8.000	Node 3 4 5 6 7 8	(I/s) 1.9 4.6 14.5 24.4 33.3 45.6 2.2	(m/s 0.3 0.4 0.9 0.8 1.0 0.9 0.0 0.0	5) 72 0.1 13 0. 25 0.0 09 0.1 03 0.4 88 0.75 0.1 00 0.1	Vol 048 0. 116 0. 364 0. 344 1. 471 2. 471 2. 412 1. 056 1. 000 0.	(m³) Vol (m³) 1043 5862 9722 8093 9870 6293 5908
(Upstream Depth) 60 minute winter 120 minute winter 120 minute winter 60 minute winter 120 minute winter 120 minute winter 120 minute winter 120 minute winter 130 minute winter	Node 2 3 4 5 6 7 19 12	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000	Node 3 4 5 6 7 8 8 13	(I/s) 1.9 4.6 14.5 24.4 33.3 45.6 2.2 0.0	(m/s 0.3 0.4 0.9 0.8 1.0 0.9 0.0 0.0 0.7	72 0.13 0.25 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.1	Vol 048 0. 116 0. 364 0. 344 1. 471 2. 471 2. 412 1. 056 1. 000 0. 194 0.	(m³) Vol (m³) 1043 5862 9722 8093 9870 6293 5908 2138
(Upstream Depth) 60 minute winter 120 minute winter 120 minute winter 60 minute winter 120 minute winter 120 minute winter 120 minute winter 1210 minute winter 1210 minute winter 1210 minute winter	Node 2 3 4 5 6 7 19 12 13	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003	Node 3 4 5 6 7 8 8 13 14	(I/s) 1.9 4.6 14.5 24.4 33.3 45.6 2.2 0.0 7.7	(m/s 0.3 0.4 0.9 0.8 1.0 0.9 0.0 0.0 0.7 1.0	72 0.13 0.25 0.109	Vol 048 0. 116 0. 364 0. 344 1. 471 2. 471 2. 412 1. 056 1. 000 0. 194 0. 141 0.	(m³) Vol (m³) 1043 5862 9722 8093 9870 6293 5908 2138 3764
(Upstream Depth) 60 minute winter 120 minute winter 120 minute winter 60 minute winter 120 minute winter 120 minute winter 120 minute winter 1240 minute winter 15 minute summer 120 minute winter 60 minute winter	Node 2 3 4 5 6 7 19 12 13 14	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005	Node 3 4 5 6 7 8 8 13 14 15	(I/s) 1.9 4.6 14.5 24.4 33.3 45.6 2.2 0.0 7.7 8.2	(m/s 0.3 0.4 0.9 0.8 1.0 0.9 0.0 0.0 0.7 1.0 0.7	72 0.13 0.25 0.09 0.10 0.10 0.10 0.10 0.10 0.10 0.10	Vol 048 0. 116 0. 364 0. 344 1. 471 2. 471 2. 412 1. 056 1. 000 0. 194 0. 141 0. 165 0.	(m³) Vol (m³) 1043 5862 9722 8093 9870 6293 5908 2138 3764 2527
(Upstream Depth) 60 minute winter 120 minute winter 120 minute winter 60 minute winter 120 minute winter 120 minute winter 120 minute winter 120 minute winter 15 minute summer 120 minute winter 60 minute winter	Node 2 3 4 5 6 7 19 12 13 14 15	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005 5.006	Node 3 4 5 6 7 8 8 13 14 15 8	(I/s) 1.9 4.6 14.5 24.4 33.3 45.6 2.2 0.0 7.7 8.2 11.7	(m/s 0.3 0.4 0.9 0.8 1.0 0.9 0.0 0.0 0.7 1.0 0.7 0.7 0.0	5) 72 0.1 13 0.25 0.0 09 0.1 03 0.4 88 0.75 0.0 00 0.1 74 0.31 0.24 0.00	Vol 048 0. 116 0. 364 0. 344 1. 471 2. 471 2. 472 1. 056 1. 000 0. 194 0. 141 0. 165 0. 000 0.	(m³) Vol (m³) 1043 5862 9722 8093 9870 6293 5908 2138 3764 2527
(Upstream Depth) 60 minute winter 120 minute winter 120 minute winter 60 minute winter 120 minute winter 120 minute winter 120 minute winter 120 minute winter 140 minute winter 15 minute summer 160 minute winter 60 minute winter 15 minute summer	Node 2 3 4 5 6 7 19 12 13 14 15 30	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005 5.006 5.000	Node 3 4 5 6 7 8 8 13 14 15 8 31	(I/s) 1.9 4.6 14.5 24.4 33.3 45.6 2.2 0.0 7.7 8.2 11.7 0.0	(m/s 0.3 0.4 0.9 0.8 1.0 0.9 0.0 0.0 0.7 1.0 0.7 0.7 0.7 0.0 0.3	5) 72 0.1 13 0. 25 0.0 09 0.1 03 0.8 88 0.7 75 0.1 00 0.1 74 0. 31 0. 24 0. 00 0.1 17 0.1	Vol 048 0. 116 0. 364 0. 344 1. 471 2. 471 2. 472 1. 056 1. 000 0. 194 0. 141 0. 165 0. 000 0. 038 0.	(m³) Vol (m³) 1043 5862 9722 8093 9870 6293 5908 2138 3764 2527 1562 0497
(Upstream Depth) 60 minute winter 120 minute winter 120 minute winter 60 minute winter 120 minute winter 120 minute winter 120 minute winter 120 minute winter 15 minute summer 120 minute winter 60 minute winter 60 minute winter 60 minute winter	Node 2 3 4 5 6 7 19 12 13 14 15 30 16	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005 5.006 5.000 6.000	Node 3 4 5 6 7 8 8 13 14 15 8 31 17	(I/s) 1.9 4.6 14.5 24.4 33.3 45.6 2.2 0.0 7.7 8.2 11.7 0.0 1.5	(m/s 0.3 0.4 0.9 0.8 1.0 0.9 0.0 0.0 0.7 1.0 0.7 0.7 0.0 0.3 0.3	5) 72 0.1 13 0.25 0.0 09 0.1 03 0.88 0.75 0.0 00 0.74 0.31 0.24 0.0 01 0.17 0.1 44 0.	Vol 048 0. 116 0. 364 0. 344 1. 471 2. 412 1. 056 1. 000 0. 194 0. 141 0. 165 0. 000 0. 038 0. 103 0.	(m³) Vol (m³) 1043 5862 9722 8093 9870 6293 5908 2138 3764 2527 1562 0497 1172
(Upstream Depth) 60 minute winter 120 minute winter 120 minute winter 60 minute winter 120 minute winter 120 minute winter 120 minute winter 120 minute winter 15 minute summer 120 minute winter 60 minute winter 60 minute winter 15 minute winter 60 minute winter	Node 2 3 4 5 6 7 19 12 13 14 15 30 16 17	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005 5.006 5.000 6.000 6.001	Node 3 4 5 6 7 8 8 13 14 15 8 31 17 18	(I/s) 1.9 4.6 14.5 24.4 33.3 45.6 2.2 0.0 7.7 8.2 11.7 0.0 1.5 4.1	(m/s 0.3 0.4 0.9 0.8 1.0 0.9 0.0 0.7 1.0 0.7 0.7 0.0 0.3 0.7 1.0 0.3	72 0.13 0.25 0.109	Vol 048 0. 116 0. 364 0. 344 1. 471 2. 471 2. 412 1. 056 1. 000 0. 194 0. 141 0. 165 0. 000 0. 038 0. 103 0. 061 0.	(m³) Vol (m³) 1043 5862 9722 8093 9870 6293 5908 2138 3764 2527 1562 0497 1172
(Upstream Depth) 60 minute winter 120 minute winter 120 minute winter 60 minute winter 120 minute winter 120 minute winter 120 minute winter 1240 minute winter 15 minute summer 120 minute winter 60 minute winter 60 minute winter 15 minute summer 60 minute winter 60 minute winter 60 minute winter	Node 2 3 4 5 6 7 19 12 13 14 15 30 16 17 18	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005 5.006 5.000 6.000 6.001 6.002	Node 3 4 5 6 7 8 8 13 14 15 8 31 17 18 13	(I/s) 1.9 4.6 14.5 24.4 33.3 45.6 2.2 0.0 7.7 8.2 11.7 0.0 1.5 4.1	(m/s 0.3 0.4 0.9 0.8 1.0 0.9 0.0 0.7 1.0 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0	72 0.13 0.25 0.09 0.10 0.10 0.10 0.10 0.10 0.10 0.10	Vol 048 0. 116 0. 364 0. 344 1. 471 2. 471 2. 472 1. 056 1. 000 0. 194 0. 141 0. 165 0. 000 0. 038 0. 103 0. 061 0. 000 0.	(m³) Vol (m³) 1043 5862 9722 8093 9870 6293 5908 2138 3764 2527 1562 0497 1172 1332
(Upstream Depth) 60 minute winter 120 minute winter 120 minute winter 60 minute winter 120 minute winter 120 minute winter 120 minute winter 120 minute winter 15 minute summer 120 minute winter 60 minute winter 60 minute winter 15 minute summer 60 minute winter 60 minute winter 60 minute winter 60 minute winter	Node 2 3 4 5 6 7 19 12 13 14 15 30 16 17 18 20	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005 5.006 5.000 6.000 6.001 6.002 3.000	Node 3 4 5 6 7 8 8 13 14 15 8 31 17 18 13 4	(I/s) 1.9 4.6 14.5 24.4 33.3 45.6 2.2 0.0 7.7 8.2 11.7 0.0 1.5 4.1 5.2 0.0	(m/s 0.3 0.4 0.9 0.8 1.0 0.9 0.0 0.7 1.0 0.7 0.7 0.0 0.3 0.7 0.3 0.7 0.0 0.3 0.7 0.0 0.3 0.7 0.0 0.3	3) 72 0.1 13 0.2 13 0.2 09 0.3 03 0.4 88 0.4 75 0.0 00 0.1 74 0.3 31 0.2 24 0.0 00 0.1 77 0.1 44 0.8 84 0.1 00 0.1 00 0.1	Vol 048 0. 116 0. 364 0. 344 1. 471 2. 471 2. 472 1. 056 1. 000 0. 194 0. 141 0. 141 0. 000 0. 038 0. 000 0. 038 0. 000 0. 0	(m³) Vol (m³) 1043 5862 9722 8093 9870 6293 5908 2138 3764 2527 1562 0497 1172 1332 1978 0000
(Upstream Depth) 60 minute winter 120 minute winter 120 minute winter 60 minute winter 120 minute winter 120 minute winter 120 minute winter 120 minute winter 15 minute summer 120 minute winter 60 minute winter 60 minute winter 60 minute summer 60 minute winter 60 minute winter 60 minute winter 61 minute winter 62 minute winter 63 minute winter 64 minute winter 65 minute summer	Node 2 3 4 5 6 7 19 12 13 14 15 30 16 17 18 20 11	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005 5.006 5.000 6.000 6.001 6.002 3.000 4.000	Node 3 4 5 6 7 8 8 13 14 15 8 31 17 18 13 4 5	(I/s) 1.9 4.6 14.5 24.4 33.3 45.6 2.2 0.0 7.7 8.2 11.7 0.0 1.5 4.1 5.2 0.0 0.0	(m/s 0.3 0.4 0.9 0.8 1.0 0.9 0.0 0.7 1.0 0.7 0.0 0.3 0.7 1.1 0.0 0.0 0.0 0.7 0.0 0.0 0.7 0.0 0.0 0.7 0.0 0.0	3) 72	Vol 048 0. 116 0. 364 0. 344 1. 471 2. 471 2. 472 1. 056 1. 000 0. 194 0. 141 0. 141 0. 165 0. 000 0. 038 0. 103 0. 061 0. 000 0. 118 0.	(m³) Vol (m³) 1043 5862 9722 8093 9870 6293 5908 2138 3764 2527 1562 0497 1172 1332 1978 0000 0106
(Upstream Depth) 60 minute winter 120 minute winter 120 minute winter 60 minute winter 120 minute winter 120 minute winter 120 minute winter 120 minute winter 15 minute summer 120 minute winter 60 minute winter 60 minute winter 60 minute winter 60 minute summer 60 minute winter 61 minute summer 62 minute winter 63 minute winter 64 minute winter 65 minute summer 65 minute summer 66 minute summer	Node 2 3 4 5 6 7 19 12 13 14 15 30 16 17 18 20 11 22	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005 5.006 5.000 6.000 6.001 6.002 3.000 4.000 1.010	Node 3 4 5 6 7 8 8 13 14 15 8 31 17 18 13 4 5 23	(I/s) 1.9 4.6 14.5 24.4 33.3 45.6 2.2 0.0 7.7 8.2 11.7 0.0 1.5 4.1 5.2 0.0 0.0 18.9	(m/s 0.3 0.4 0.9 0.8 1.0 0.9 0.0 0.7 0.7 0.0 0.3 0.7 0.0 0.3 0.7 0.0 0.0 0.7 0.0 0.7 0.0 0.0 0.7 0.0 0.0	3) 72 0.1 13 0.25 0.0 09 0.3 88 0.4 75 0.0 00 74 0.31 0.24 0.0 01 17 0.4 44 0.84 0.0 00 0.0 00 0.0 00 0.0 00 00 00 00 00	Vol 048 0. 116 0. 364 0. 344 1. 471 2. 471 2. 472 1. 056 1. 000 0. 194 0. 141 0. 165 0. 000 0. 038 0. 103 0. 061 0. 000 0. 118 0. 332 1.	(m³) Vol (m³) 1043 5862 9722 8093 9870 6293 5908 2138 3764 2527 1562 0497 1172 1332 1978 0000 0106 4586 66.4
(Upstream Depth) 60 minute winter 120 minute winter 120 minute winter 60 minute winter 120 minute winter 120 minute winter 120 minute winter 120 minute winter 15 minute summer 120 minute winter 60 minute winter 60 minute winter 15 minute summer 60 minute winter 15 minute summer 15 minute summer 15 minute winter 15 minute winter 15 minute winter 15 minute summer 15 minute summer 15 minute summer 15 minute summer	Node 2 3 4 5 6 7 19 12 13 14 15 30 16 17 18 20 11 22 8	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005 5.006 5.000 6.000 6.001 6.002 3.000 4.000 1.010 1.007	Node 3 4 5 6 7 8 8 13 14 15 8 31 17 18 13 4 5 23 9	(I/s) 1.9 4.6 14.5 24.4 33.3 45.6 2.2 0.0 7.7 8.2 11.7 0.0 1.5 4.1 5.2 0.0 0.0 18.9 53.1	(m/s 0.3 0.4 0.9 0.8 1.0 0.9 0.0 0.7 0.7 0.0 0.3 0.7 1.0 0.0 0.7 0.0 0.7 0.0 0.7 0.0 0.7 0.0 0.7 0.0 0.7 0.0 0.7 0.0 0.7 0.0 0.7 0.0 0.7 0.0 0.7 0.0 0.7 0.0 0.7 0.8 0.9	3) 72 0.1 13 0.25 0.0 09 0.3 88 0.75 0.0 00 74 0.31 0.24 0.0 01 17 0.1 44 0.84 0.0 00 0.0 00 0.0 00 0.0 00 00 00 00 00	Vol 048 0. 116 0. 364 0. 344 1. 471 2. 412 1. 056 1. 000 0. 194 0. 141 0. 165 0. 000 0. 000 0. 103 0. 001 000 0. 118 0. 332 1. 341 1.	(m³) Vol (m³) 1043 5862 9722 8093 9870 6293 5908 2138 3764 2527 1562 0497 1172 1332 1978 0000 0106 4586 66.4 3463
(Upstream Depth) 60 minute winter 120 minute winter 120 minute winter 60 minute winter 120 minute winter 15 minute summer 100 minute winter 60 minute winter 15 minute summer 60 minute winter 15 minute summer 60 minute winter 15 minute summer 15 minute winter 15 minute winter 15 minute summer 15 minute summer 140 minute winter 240 minute winter	Node 2 3 4 5 6 7 19 12 13 14 15 30 16 17 18 20 11 22 8 9	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005 5.006 5.000 6.000 6.001 6.002 3.000 4.000 1.010 1.007 1.008	Node 3 4 5 6 7 8 8 13 14 15 8 31 17 18 13 4 5 23 9 10 22	(I/s) 1.9 4.6 14.5 24.4 33.3 45.6 2.2 0.0 7.7 8.2 11.7 0.0 1.5 4.1 5.2 0.0 0.0 18.9 53.1	(m/s 0.3 0.4 0.9 0.8 1.0 0.9 0.0 0.7 1.0 0.7 0.0 0.3 0.7 1.1 0.0 0.0 0.7 0.8 0.9 0.0 0.0 0.7 0.0 0.0 0.7 0.0 0.0 0.0 0.0	3) 72 0.1 13 0.25 0.0 09 0.3 88 0.75 0.0 00 74 0.31 0.24 0.0 01 17 0.1 44 0.84 0.0 00 0.0 00 0.0 00 0.0 00 00 00 00 00	Vol 048 0. 116 0. 364 0. 344 1. 471 2. 412 1. 056 1. 000 0. 194 0. 141 0. 165 0. 000 0. 000 0. 103 0. 001 000 0. 118 0. 332 1. 341 1.	(m³) Vol (m³) 1043 5862 9722 8093 9870 6293 5908 2138 3764 2527 1562 0497 1172 1332 1978 0000 0106 4586 66.4 3463 3049
(Upstream Depth) 60 minute winter 120 minute winter 120 minute winter 60 minute winter 120 minute winter 120 minute winter 120 minute winter 120 minute winter 1240 minute winter 15 minute summer 100 minute winter 60 minute winter 15 minute summer 60 minute winter 15 minute summer 15 minute winter 15 minute winter 15 minute winter 15 minute winter 15 minute summer 140 minute winter 15 minute summer 15 minute summer 15 minute summer 15 minute summer 160 minute winter 170 minute winter	Node 2 3 4 5 6 7 19 12 13 14 15 30 16 17 18 20 11 22 8 9 10	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005 5.006 5.000 6.000 6.001 6.002 3.000 4.000 1.010 1.007 1.008 1.009	Node 3 4 5 6 7 8 8 13 14 15 8 31 17 18 13 4 5 23 9 10 22	(I/s) 1.9 4.6 14.5 24.4 33.3 45.6 2.2 0.0 7.7 8.2 11.7 0.0 1.5 4.1 5.2 0.0 0.0 18.9 53.1 55.4 21.0	(m/s 0.3 0.4 0.9 0.8 1.0 0.9 0.0 0.7 1.0 0.7 0.0 0.3 0.7 1.1 0.0 0.0 0.7 0.0 0.0 0.7 0.0 0.0 0.7 0.0 0.0	72 0.1 13 0.2 13 0.2 5 0.0 09 0.1 03 0.4 88 0.7 75 0.0 00 0.1 74 0.3 31 0.2 24 0.0 00 0.1 17 0.1 44 0.8 84 0.0 00 0.1 00	Vol 048 0. 116 0. 364 0. 344 1. 471 2. 471 2. 472 1. 056 1. 000 0. 194 0. 141 0. 141 0. 141 0. 000 0. 038 0. 000 0. 038 0. 000 0. 018 0. 018 0. 020 0. 031 0. 032 1. 033 1. 033 1. 034 1. 035 1. 046 1. 056 1. 0	(m³) Vol (m³) 1043 5862 9722 8093 9870 6293 5908 2138 3764 2527 1562 0497 1172 1332 1978 0000 0106 4586 66.4 3463 3049
(Upstream Depth) 60 minute winter 120 minute winter 120 minute winter 60 minute winter 120 minute winter 15 minute summer 100 minute winter 60 minute winter 15 minute summer 60 minute winter 15 minute summer 15 minute summer 15 minute winter 15 minute winter 15 minute winter 15 minute summer 140 minute winter	Node 2 3 4 5 6 7 19 12 13 14 15 30 16 17 18 20 11 22 8 9 10 10	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005 5.006 5.000 6.001 6.002 3.000 4.000 1.010 1.007 1.008 1.009 Infiltration	Node 3 4 5 6 7 8 8 13 14 15 8 31 17 18 13 4 5 23 9 10 22	(I/s) 1.9 4.6 14.5 24.4 33.3 45.6 2.2 0.0 7.7 8.2 11.7 0.0 1.5 4.1 5.2 0.0 0.0 18.9 53.1 55.4 21.0 5.7	(m/s 0.3 0.4 0.9 0.8 1.0 0.9 0.0 0.7 0.0 0.7 0.0 0.3 0.7 1.1 0.0 0.0 0.7 0.0 0.0 0.7 0.0 0.0 0.7 0.0 0.0	3) 72 0.1 13 0.25 0.9 03 0.88 0.75 0.0 00 74 0.31 0.24 0.0 17 0.1 44 0.84 0.0 00 0.1 73 0.0 26 0.0 09 73 0.0 73 0.0 92 0.0	Vol 048 0. 116 0. 364 0. 344 1. 471 2. 471 2. 472 1. 056 1. 000 0. 194 0. 141 0. 1	(m³) Vol (m³) 1043 5862 9722 8093 9870 6293 5908 2138 3764 2527 1562 0497 1172 1332 1978 0000 0106 4586 66.4 3463 3049 3152

File: Broomfield Midleton-RFI.; Network: Storm Network 1 George Forde 27/02/2024 Page 15 Residential Development Broomfield, Midleton, Co. Cork

Results for 30 year +10% CC Critical Storm Duration. Lowest mass balance: 99.80%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
120 minute winter	31	118	62.376	0.046	2.2	4.3284	0.0000	OK
120 minute winter	27	98	62.207	0.032	1.8	0.0394	0.0000	ОК
60 minute winter	24	64	55.400	0.012	0.4	0.0142	0.0000	OK
120 minute winter	25	94	54.745	0.018	1.7	0.0241	0.0000	OK
120 minute winter	26	94	54.223	0.018	1.7	0.0000	0.0000	OK
15 minute summer	21	1	64.688	0.000	0.0	0.0000	0.0000	OK
15 minute summer	1	1	63.190	0.000	0.0	0.0000	0.0000	OK

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
120 minute winter	29	Infiltration		6.1				
120 minute winter	31	5.001	27	0.3	0.194	0.007	0.0567	
120 minute winter	31	Infiltration		1.2				
120 minute winter	27	5.002	28	1.8	0.288	0.045	0.3535	
60 minute winter	24	9.000	25	0.4	0.345	0.006	0.0438	
120 minute winter	25	9.001	26	1.7	1.131	0.013	0.0126	7.5
15 minute summer	21	2.000	3	0.0	0.000	0.000	0.0000	
15 minute summer	1	1.000	2	0.0	0.000	0.000	0.0465	

File: Broomfield Midleton-RFI.; Network: Storm Network 1 George Forde 27/02/2024 Page 16 Residential Development Broomfield, Midleton, Co. Cork

Results for 100 year +20% CC Critical Storm Duration. Lowest mass balance: 99.80%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)		ood n³)	S	Status
60 minute winter	2	63	62.993	0.039	2.7	0.0502		0000	OK	
60 minute winter	3	61	62.897	0.061	6.5	0.0798	0.0	0000	ОК	
60 minute winter	4	61	62.647	0.116	20.5	0.2293	0.0	0000	OK	
180 minute winter	5	152	62.441	1.589	31.2	3.2664	0.0	0000	SUR	CHARGED
180 minute winter	23	152	59.283	0.097	20.7	0.0000	0.0	0000	OK	
180 minute winter	6	152	62.412	1.806	42.6	2.8910	0.0	0000	SUR	CHARGED
180 minute winter	7	152	62.345	2.182	58.4	5.1095	0.0	0000	SUR	CHARGED
240 minute winter	19	180	62.230	2.476	23.3	2.8004	31.4	4080	FLOC	OD
15 minute summer	12	1	65.313	0.000	0.0	0.0000	0.0	0000	OK	
60 minute winter	13	63	62.426	0.082	11.0	0.1162	0.0	0000	OK	
180 minute winter	14	152	62.341	1.347	10.6	1.5232	0.0	0000	SUR	CHARGED
180 minute winter	15	152	62.329	1.805	15.1	2.6858	0.0	0000	SUR	CHARGED
15 minute summer	30	1	62.577	0.000	0.0	0.0000		0000	OK	
60 minute winter	16	58	64.884	0.035	2.1	0.0473		0000	OK	
60 minute winter	17	58	64.767	0.060	5.8	0.0889		0000	OK	
60 minute winter	18	61	64.610	0.045	7.4	0.0593		0000	OK	
15 minute summer	20	1	63.623	0.000	0.0	0.0000		0000	OK	
180 minute winter	11	152	62.437	1.292	4.4	1.4609		0000		DD RISK
180 minute winter	22	152	62.320	3.090	25.2	7.8641		3441	FLOC	
180 minute winter	8	152	62.327	3.034	81.5	5.7469		0000		CHARGED
240 minute winter	9	184	62.325	3.053	76.1	5.0551		0000		CHARGED
180 minute winter	10	152	62.323	3.072	85.1	233.3187		0000		OD RISK
60 minute winter	28	61	61.931	0.078	10.4	0.1154		0000	OK	
120 minute winter	29	120	61.880	0.415	10.3	11.3125	0.0	0000	SUR	CHARGED
Link Event	US	Link	DS	Outflow		-	v/Cap	Lin		Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/	/s)	•	Vol (m³)	Discharge Vol (m³)
(Upstream Depth) 60 minute winter	Node 2	1.001	Node 3	(I/s) 2.7	(m/ 7 0.4	's) 412	0.068	Vol (0.13	m³) 335	_
(Upstream Depth) 60 minute winter 60 minute winter	Node 2 3	1.001 1.002	Node 3 4	(I/s) 2.7 6.5	(m/ 7 0.4 5 0.4	's) 412 449	0.068 0.163	Vol (1 0.13 0.75	m³) 335 570	_
(Upstream Depth) 60 minute winter 60 minute winter 60 minute winter	Node 2 3 4	1.001 1.002 1.003	Node 3 4 5	(I/s) 2.7 6.5 20.4	(m/ 7 0.4 5 0.4 1 1.0	's) 412 449 009	0.068 0.163 0.514	Vol (1 0.13 0.75 1.25	m³) 335 570 576	_
(Upstream Depth) 60 minute winter 60 minute winter 60 minute winter 180 minute winter	Node 2 3 4 5	1.001 1.002 1.003 1.004	Node 3 4 5 6	(I/s) 2.7 6.5 20.4 31.1	(m/ 7 0.4 5 0.4 1 1.0 L 0.8	's) 412 449 009 856	0.068 0.163 0.514 0.440	Vol (1 0.13 0.75 1.25 4.22	m³) 335 570 576 252	_
(Upstream Depth) 60 minute winter 60 minute winter 60 minute winter 180 minute winter	Node 2 3 4 5	1.001 1.002 1.003 1.004	Node 3 4 5 6	(I/s) 2.7 6.5 20.4 31.1	(m/ 7 0.4 5 0.4 1 1.0 1 0.8	's) 412 449 009 356	0.068 0.163 0.514 0.440 0.602	Vol (1 0.13 0.75 1.25 4.22	m³) 335 570 576 252	_
(Upstream Depth) 60 minute winter 60 minute winter 180 minute winter 180 minute winter	Node 2 3 4 5 6 7	1.001 1.002 1.003 1.004 1.005 1.006	Node 3 4 5 6	(I/s) 2.7 6.9 20.4 31.3 42.6 58.4	(m/ 7 0.4 5 0.4 1 1.0 1 0.8 5 1.0	7s) 412 449 009 856 073	0.068 0.163 0.514 0.440 0.602 0.528	Vol (1 0.13 0.75 1.25 4.22 6.33 3.89	m³) 335 570 576 252 377 940	_
(Upstream Depth) 60 minute winter 60 minute winter 180 minute winter 180 minute winter 180 minute winter 240 minute winter	Node 2 3 4 5 6 7 19	1.001 1.002 1.003 1.004 1.005 1.006 8.000	Node 3 4 5 6 7 8 8	(I/s) 2.7 6.9 20.4 31.3 42.6 58.4 -23.3	(m/ 7 0.4 5 0.4 1 1.0 1 0.8 5 1.0 1 1.0 3 -0.9	7's) 412 4449 009 856 073 059	0.068 0.163 0.514 0.440 0.602 0.528 0.586	Vol (1 0.13 0.75 1.25 4.22 6.33 3.89 1.59	m³) 335 570 576 252 377 940 908	_
(Upstream Depth) 60 minute winter 60 minute winter 180 minute winter	Node 2 3 4 5 6 7 19 12	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000	Node 3 4 5 6 7 8 8 13	(I/s) 2.7 6.5 20.4 31.2 42.6 58.4 -23.3	(m/ 7 0.4 5 0.4 1 1.0 1 0.8 5 1.0 1 1.0 3 -0.5 0 0.0	7's) 412 449 009 856 073 059 687 -	0.068 0.163 0.514 0.440 0.602 0.528 0.586 0.000	Vol (i 0.13 0.79 1.29 4.22 6.33 3.89 1.59 0.27	m³) 335 570 576 252 377 940 908 714	_
(Upstream Depth) 60 minute winter 60 minute winter 180 minute winter 15 minute summer 60 minute winter	Node 2 3 4 5 6 7 19 12 13	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003	Node 3 4 5 6 7 8 8 13 14	(I/s) 2.7 6.9 20.4 31.1 42.6 58.4 -23.3 0.0	(m/ 7 0.4 5 0.4 1 1.0 1 0.8 5 1.0 1 1.0 3 -0.9 0 0.0	7's) 412 449 009 856 073 059 587 -	0.068 0.163 0.514 0.440 0.602 0.528 0.586 0.000 0.277	Vol (1 0.13 0.79 1.29 4.22 6.33 3.89 1.59 0.27	m³) 335 570 576 252 377 940 908 714 880	_
(Upstream Depth) 60 minute winter 60 minute winter 180 minute winter 240 minute winter 15 minute summer 60 minute winter 180 minute winter	Node 2 3 4 5 6 7 19 12 13 14	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005	Node 3 4 5 6 7 8 8 13 14 15	(I/s) 2.7 6.5 20.4 31.1 42.6 58.4 -23.3 0.0 11.0	(m/ 7 0.4 5 0.4 1 1.0 1 0.8 5 1.0 1 1.0 0 0.0 0 0.8	's) 412 449 009 856 073 059 587 - 000 853	0.068 0.163 0.514 0.440 0.602 0.528 0.586 0.000 0.277 0.183	Vol (i 0.13 0.75 1.25 4.22 6.33 3.85 1.59 0.27 0.48 1.25	m³) 335 570 576 252 377 940 908 714 880 589	_
(Upstream Depth) 60 minute winter 60 minute winter 180 minute winter 180 minute winter 180 minute winter 180 minute winter 240 minute winter 15 minute summer 60 minute winter 180 minute winter	Node 2 3 4 5 6 7 19 12 13 14 15	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005 5.006	Node 3 4 5 6 7 8 8 13 14 15 8	(I/s) 2.7 6.9 20.4 31.3 42.6 58.4 -23.3 0.6 11.6 10.6	(m/ 7 0.4 5 0.4 1 1.0 1 0.8 5 1.0 1 0.8 0 0.6 0 0.8 5 1.1	7s) 412 449 009 856 073 059 587 000 853 107	0.068 0.163 0.514 0.440 0.602 0.528 0.586 0.000 0.277 0.183 0.212	Vol (i 0.13 0.75 1.25 4.22 6.33 3.88 1.55 0.27 0.48 1.25	m³) 335 570 576 252 377 940 908 714 880 589 788	_
(Upstream Depth) 60 minute winter 60 minute winter 180 minute winter 180 minute winter 180 minute winter 240 minute winter 15 minute summer 60 minute winter 180 minute winter 180 minute winter	Node 2 3 4 5 6 7 19 12 13 14 15 30	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005 5.006 5.000	Node 3 4 5 6 7 8 8 13 14 15 8 31	(I/s) 2.7 6.9 20.4 31.3 42.6 58.4 -23.3 0.0 11.0 10.6	(m/ 7 0.4 5 0.4 1 0.8 5 1.0 1 1.0 1 1.0 1 0.8 5 1.0 1 0.0 1 0.8	's) 412 449 009 856 073 059 687 000 853 107 775	0.068 0.163 0.514 0.440 0.602 0.528 0.586 0.000 0.277 0.183 0.212 0.000	Vol (0 0.13 0.75 1.25 4.22 6.33 3.89 1.59 0.27 0.44 1.25 0.67	m³) 335 570 576 252 377 940 908 714 880 589 788 831	_
(Upstream Depth) 60 minute winter 60 minute winter 180 minute winter 180 minute winter 180 minute winter 240 minute winter 15 minute summer 60 minute winter 180 minute winter	Node 2 3 4 5 6 7 19 12 13 14 15 30 16	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005 5.006 5.000 6.000	Node 3 4 5 6 7 8 8 13 14 15 8 31 17	(I/s) 2.7 6.5 20.4 31.7 42.6 58.4 -23.3 0.0 11.0 10.6 2.1	(m/ 7 0.4 5 0.4 1 1.0 5 1.0 1 1.0 3 -0.5 0 0.0 0 0.8 1.1 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5	7s) 412 449 009 856 073 059 587 - 000 853 107 775 0000 348	0.068 0.163 0.514 0.440 0.602 0.528 0.586 0.000 0.277 0.183 0.212 0.000 0.053	Vol (0 0.13 0.75 1.25 4.22 6.33 3.89 1.59 0.27 0.48 1.29 0.65 0.08	m³) 335 570 576 252 377 940 908 714 880 589 788 831 495	_
(Upstream Depth) 60 minute winter 60 minute winter 180 minute winter 15 minute summer 60 minute winter 180 minute winter 180 minute winter 15 minute winter 160 minute winter 60 minute winter	Node 2 3 4 5 6 7 19 12 13 14 15 30 16 17	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005 5.006 5.000 6.000 6.001	Node 3 4 5 6 7 8 8 13 14 15 8 31 17 18	(I/s) 2.7 6.5 20.4 31.1 42.6 58.4 -23.3 0.0 11.0 10.6 15.1 0.0 2.1	(m/ 7 0.4 5 0.4 1 1.0 5 1.0 1 1.0 1 0.8 0 0.0 0 0.8 1 1.0 0 0.8 1 1.0 0 0.8 1 1.0 0 0.8 1 1.0 0 0.8 1 1.0 0 0.8	7s) 412 449 009 856 073 059 587 -000 853 107 775 000 348 820	0.068 0.163 0.514 0.440 0.602 0.528 0.586 0.000 0.277 0.183 0.212 0.000 0.053 0.145	Vol (i 0.13 0.79 1.29 4.22 6.33 3.89 1.59 0.22 0.48 1.29 0.66 0.08 0.14	m³) 335 570 576 252 377 940 908 714 880 589 788 831 495 707	_
(Upstream Depth) 60 minute winter 60 minute winter 180 minute winter 180 minute winter 180 minute winter 180 minute winter 240 minute winter 15 minute summer 60 minute winter 180 minute winter 180 minute winter 15 minute winter 60 minute winter	Node 2 3 4 5 6 7 19 12 13 14 15 30 16 17 18	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005 5.006 5.000 6.000 6.001 6.002	Node 3 4 5 6 7 8 8 13 14 15 8 31 17 18 13	(I/s) 2.7 6.5 20.4 31.3 42.6 58.4 -23.3 0.0 11.0 10.6 15.1 5.8 7.4	(m/ 7 0.4 5 0.4 1 1.0 1 0.8 5 1.0 1 0.8 6 1.0 0 0.8 1 0.5 1	7's) 412 449 009 856 073 059 587 - 000 853 107 7775 000 348 820 313	0.068 0.163 0.514 0.440 0.602 0.528 0.586 0.000 0.277 0.183 0.212 0.000 0.053 0.145 0.087	Vol (0 0.13 0.75 1.25 4.22 6.33 3.85 1.55 0.27 0.46 1.25 0.06 0.14 0.17	m³) 335 570 576 252 377 940 908 714 880 589 788 831 495 707	_
(Upstream Depth) 60 minute winter 60 minute winter 180 minute winter 180 minute winter 180 minute winter 180 minute winter 240 minute winter 15 minute summer 60 minute winter 180 minute winter 180 minute winter 15 minute summer 60 minute winter 15 minute summer 60 minute winter 15 minute summer 60 minute winter	Node 2 3 4 5 6 7 19 12 13 14 15 30 16 17 18 20	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005 5.006 5.000 6.000 6.001 6.002 3.000	Node 3 4 5 6 7 8 8 13 14 15 8 31 17 18 13 4	(I/s) 2.7 6.9 20.4 31.3 42.6 58.4 -23.3 0.0 11.0 2.3 5.8 7.4 0.0	(m/ 7 0.4 5 0.4 1 1.0 1 0.8 5 1.0 1 0.8 5 1.0 0 0.8 5 1.3 0 0.0 1 0.3 1 0.3 1 1.3 0 0.6	7's) 412 449 009 856 073 059 587 000 853 107 775 000 348 820 313	0.068 0.163 0.514 0.440 0.602 0.528 0.586 0.000 0.277 0.183 0.212 0.000 0.053 0.145 0.087 0.000	Vol (0 0.13 0.75 1.25 4.22 6.33 3.88 1.55 0.27 0.48 1.25 0.60 0.12 0.12 0.02	m³) 335 570 576 252 377 940 908 714 880 589 788 831 495 707 537	_
(Upstream Depth) 60 minute winter 60 minute winter 180 minute winter 180 minute winter 180 minute winter 180 minute winter 240 minute winter 15 minute summer 60 minute winter 180 minute winter 15 minute winter 60 minute winter 15 minute summer 60 minute winter 15 minute summer 60 minute winter 15 minute summer 60 minute winter 15 minute winter	Node 2 3 4 5 6 7 19 12 13 14 15 30 16 17 18 20 11	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005 5.006 5.000 6.000 6.001 6.002 3.000 4.000	Node 3 4 5 6 7 8 8 13 14 15 8 31 17 18 13 4 5	(I/s) 2.7 6.9 20.4 31.3 42.6 58.4 -23.3 0.0 11.0 15.3 0.0 2.3 5.8 7.4 0.0 -4.4	(m/ 7 0.4 5 0.4 1 0.8 5 1.0 1 1.0 6 1.0 1 0.0 0 0.8 5 1.0 0 0.0 0 0.8 1 0.0 1 0.	's) 412 449 009 856 073 059 687 000 853 107 775 000 348 820 313 000 112	0.068 0.163 0.514 0.440 0.602 0.528 0.586 0.000 0.277 0.183 0.212 0.000 0.053 0.145 0.087 0.000 0.112	Vol (0 0.13 0.75 1.25 4.22 6.33 3.89 1.55 0.27 0.48 1.25 0.67 0.08 0.14 0.11 0.25 0.00	m³) 335 570 576 252 377 940 908 714 880 589 788 831 495 707 537 000 715	Vol (m³)
(Upstream Depth) 60 minute winter 60 minute winter 180 minute winter 180 minute winter 180 minute winter 180 minute winter 240 minute winter 15 minute summer 60 minute winter 180 minute winter 15 minute summer 60 minute winter 15 minute summer 60 minute winter 15 minute summer 60 minute winter 15 minute winter 15 minute winter 160 minute winter 15 minute winter	Node 2 3 4 5 6 7 19 12 13 14 15 30 16 17 18 20 11 22	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005 5.006 5.000 6.000 6.001 6.002 3.000 4.000 1.010	Node 3 4 5 6 7 8 8 13 14 15 8 31 17 18 13 4 5 23	(I/s) 2.7 6.9 20.4 31.3 42.6 58.4 -23.3 0.0 11.0 15.3 0.0 2.1 5.8 7.4 0.0 -4.4 20.7	(m/ 7 0.4 5 0.4 1 0.8 5 1.0 6 1.0 6 1.0 7 0.0 1 0.	7s) 412 449 009 856 073 059 587 - 000 853 107 775 000 348 820 313 000 112 - 742	0.068 0.163 0.514 0.440 0.602 0.528 0.586 0.000 0.277 0.183 0.212 0.000 0.053 0.145 0.087 0.000 0.112 0.128	Vol (0 0.13 0.75 1.25 4.22 6.33 3.89 1.59 0.25 0.48 1.25 0.67 0.08 0.14 0.15 0.25 0.00 0.14 0.15 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.2	m³) 335 570 576 252 377 940 908 714 880 589 788 831 495 707 537 000 715	_
(Upstream Depth) 60 minute winter 60 minute winter 180 minute winter 180 minute winter 180 minute winter 180 minute winter 240 minute winter 15 minute summer 60 minute winter 180 minute winter 15 minute summer 60 minute winter 15 minute summer 60 minute winter 15 minute summer 60 minute winter 15 minute winter 160 minute winter 15 minute winter 15 minute summer 180 minute winter	Node 2 3 4 5 6 7 19 12 13 14 15 30 16 17 18 20 11 22 8	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005 5.006 5.000 6.000 6.001 6.002 3.000 4.000 1.010 1.007	Node 3 4 5 6 7 8 8 13 14 15 8 31 17 18 13 4 5 23 9	(I/s) 2.7 6.5 20.4 31.1 42.6 58.4 -23.3 0.0 11.0 10.6 15.1 0.0 2.1 5.8 7.4 0.0 4.4 20.7 81.5	(m/ 7 0.4 5 0.4 1 1.0 5 1.0 6 1.0 1 1.0 1 0.5 1 1.0 1 0.5 1 1.0 1 0.5 1 1.0 1 0.5 1 1.0 1 0.5 1 1.0 1 0.5 1 0.	7s) 412 449 009 856 073 059 587 - 000 853 107 775 000 348 820 313 000 112 - 742	0.068 0.163 0.514 0.440 0.602 0.528 0.586 0.000 0.277 0.183 0.212 0.000 0.053 0.145 0.087 0.000 0.112 0.128 0.510	Vol (0 0.13 0.75 1.25 4.22 6.33 3.89 1.59 0.25 0.48 1.29 0.65 0.00 0.14 0.25 0.00 1.47 0.48 1.34	m³) 335 570 576 252 377 940 908 714 880 589 788 831 495 707 537 000 715 897	Vol (m³)
(Upstream Depth) 60 minute winter 60 minute winter 60 minute winter 180 minute winter 180 minute winter 180 minute winter 240 minute winter 240 minute winter 15 minute summer 60 minute winter 180 minute winter 15 minute summer 60 minute winter 15 minute summer 60 minute winter 15 minute winter 15 minute winter 160 minute winter 180 minute winter 180 minute winter 180 minute winter	Node 2 3 4 5 6 7 19 12 13 14 15 30 16 17 18 20 11 22 8 9	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005 5.006 5.000 6.000 6.001 6.002 3.000 4.000 1.010 1.007 1.008	Node 3 4 5 6 7 8 8 13 14 15 8 31 17 18 13 4 5 23 9 10	(I/s) 2.7 6.5 20.4 31.1 42.6 58.4 -23.3 0.0 11.0 10.6 15.1 0.0 2.7 5.8 7.4 20.7 81.5 76.1	(m/ 7 0.4 5 0.4 1 1.0 5 1.0 6 1.0 6 1.0 1 0.0 1 0.	7s) 412 449 009 856 073 059 687 -000 853 107 775 000 348 8320 313 000 112 -742 910 068	0.068 0.163 0.514 0.440 0.602 0.528 0.586 0.000 0.277 0.183 0.212 0.000 0.053 0.145 0.087 0.000 0.112 0.128 0.510 0.469	Vol (i 0.13 0.79 1.29 4.22 6.33 3.89 1.59 0.21 0.06 0.08 0.14 0.17 0.29 0.00 1.41 1.34 1.36	m³) 335 570 576 252 377 940 908 714 880 589 788 831 495 707 537 000 715 897 463	Vol (m³)
(Upstream Depth) 60 minute winter 60 minute winter 180 minute winter 180 minute winter 180 minute winter 180 minute winter 240 minute winter 15 minute summer 60 minute winter 180 minute winter 15 minute summer 60 minute winter 15 minute summer 60 minute winter 15 minute summer 60 minute winter 15 minute winter 160 minute winter 15 minute winter 15 minute summer 180 minute winter	Node 2 3 4 5 6 7 19 12 13 14 15 30 16 17 18 20 11 22 8	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005 5.006 5.000 6.000 6.001 6.002 3.000 4.000 1.010 1.007	Node 3 4 5 6 7 8 8 13 14 15 8 31 17 18 13 4 5 23 9 10 22	(I/s) 2.7 6.5 20.4 31.1 42.6 58.4 -23.3 0.0 11.0 10.6 15.1 0.0 2.1 5.8 7.4 0.0 4.4 20.7 81.5	(m/ 7 0.4 5 0.4 1 1.0 5 1.0 6 1.0 6 1.0 7 0.5 1 0.0 1 0.	7s) 412 449 009 856 073 059 687 -000 853 107 775 000 348 8320 313 000 112 -742 910 068	0.068 0.163 0.514 0.440 0.602 0.528 0.586 0.000 0.277 0.183 0.212 0.000 0.053 0.145 0.087 0.000 0.112 0.128 0.510	Vol (0 0.13 0.75 1.25 4.22 6.33 3.89 1.59 0.25 0.48 1.29 0.65 0.00 0.14 0.25 0.00 1.47 0.48 1.34	m³) 335 570 576 252 377 940 908 714 880 589 788 831 495 707 537 000 715 897 463	Vol (m³)
(Upstream Depth) 60 minute winter 60 minute winter 180 minute winter 180 minute winter 180 minute winter 180 minute winter 240 minute winter 15 minute summer 60 minute winter 180 minute winter 15 minute summer 60 minute winter 15 minute summer 60 minute winter 15 minute summer 60 minute winter 15 minute summer 160 minute winter 15 minute winter 160 minute winter 15 minute summer 140 minute winter 180 minute winter 180 minute winter	Node 2 3 4 5 6 7 19 12 13 14 15 30 16 17 18 20 11 22 8 9 10	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005 5.006 5.000 6.000 6.001 6.002 3.000 4.000 1.010 1.007 1.008 1.009	Node 3 4 5 6 7 8 8 13 14 15 8 31 17 18 13 4 5 23 9 10 22	(I/s) 2.7 6.9 20.4 31.3 42.6 58.4 -23.3 0.6 11.6 10.6 15.1 0.6 2.3 5.8 7.4 0.6 4.1 20.7 81.9 76.3	(m/ 7 0.4 5 0.4 1 0.8 5 1.0 1 1.0 5 1.0 0 0.8 5 1.0 0 0.0 0 0.8 5 1.3 0 0.0 0 0.8 1 1.3 0 0.0 1 0.3 1 1.3 0 0.0 1 0.3 1 0.	7s) 412 449 009 856 073 059 687 000 853 107 775 000 348 820 313 000 112 -742 910 068 159	0.068 0.163 0.514 0.440 0.602 0.528 0.586 0.000 0.277 0.183 0.212 0.000 0.053 0.145 0.087 0.000 0.112 0.128 0.510 0.469	Vol (i 0.13 0.79 1.29 4.22 6.33 3.89 1.59 0.21 0.06 0.08 0.14 0.17 0.29 0.00 1.41 1.34 1.36	m³) 335 570 576 252 377 940 908 714 880 589 788 831 495 707 537 000 715 897 463 049	Vol (m³)
(Upstream Depth) 60 minute winter 60 minute winter 180 minute winter 180 minute winter 180 minute winter 180 minute winter 240 minute winter 15 minute summer 60 minute winter 180 minute winter 15 minute summer 60 minute winter 15 minute summer 60 minute winter 15 minute summer 60 minute winter 15 minute summer 160 minute winter 15 minute winter 15 minute winter 15 minute winter 160 minute winter 170 minute winter 180 minute winter 180 minute winter 180 minute winter	Node 2 3 4 5 6 7 19 12 13 14 15 30 16 17 18 20 11 22 8 9 10 10	1.001 1.002 1.003 1.004 1.005 1.006 8.000 7.000 6.003 5.005 5.006 5.000 6.001 6.002 3.000 4.000 1.010 1.007 1.008 1.009 Infiltration	Node 3 4 5 6 7 8 8 13 14 15 8 31 17 18 13 4 5 23 9 10 22	(I/s) 2.7 6.9 20.4 31.3 42.6 58.4 -23.3 0.0 11.0 15.3 0.0 2.3 5.8 7.4 20.7 81.9 76.1 25.2 5.7	(m/ 7 0.4 5 0.4 1 0.8 5 1.0 6 1.0 6 1.0 7 0.5 1 0.0 1 0.	7s) 412 449 009 856 073 059 587 - 000 853 107 775 000 348 820 313 000 112 - 742 910 068 159	0.068 0.163 0.514 0.440 0.602 0.528 0.586 0.000 0.277 0.183 0.212 0.000 0.053 0.145 0.087 0.000 0.112 0.128 0.510 0.469 0.156	Vol (0 0.13 0.75 1.25 4.22 6.33 3.89 1.55 0.27 0.48 1.25 0.00 0.14 0.15 0.00 1.41 0.48 1.34 1.36	m³) 335 570 576 252 377 940 908 714 880 589 788 831 495 707 537 000 715 897 463 049	Vol (m³)

File: Broomfield Midleton-RFI.; Network: Storm Network 1 George Forde 27/02/2024 Page 17 Residential Development Broomfield, Midleton, Co. Cork

Results for 100 year +20% CC Critical Storm Duration. Lowest mass balance: 99.80%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
120 minute winter	31	122	62.398	0.068	3.0	6.3092	0.0000	ОК
60 minute winter	27	62	62.213	0.038	2.5	0.0465	0.0000	ОК
60 minute winter	24	56	55.402	0.014	0.5	0.0158	0.0000	OK
60 minute winter	25	61	54.748	0.022	2.4	0.0284	0.0000	OK
60 minute winter	26	61	54.226	0.021	2.4	0.0000	0.0000	OK
15 minute summer	21	1	64.688	0.000	0.0	0.0000	0.0000	OK
15 minute summer	1	1	63.190	0.000	0.0	0.0000	0.0000	OK

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
120 minute winter	29	Infiltration		7.0				
120 minute winter	31	5.001	27	0.4	0.243	0.011	0.0730	
120 minute winter	31	Infiltration		1.3				
60 minute winter	27	5.002	28	2.5	0.315	0.064	0.4534	
60 minute winter	24	9.000	25	0.5	0.360	0.007	0.0543	
60 minute winter	25	9.001	26	2.4	1.253	0.018	0.0161	8.5
15 minute summer	21	2.000	3	0.0	0.000	0.000	0.0000	
15 minute summer	1	1.000	2	0.0	0.000	0.000	0.0588	

File: Broomfield Midleton-RFI.; Network: Storm Network 2 George Forde 26/02/2024 Page 1 Residential Development Broomfield, Midleton, Co. Cork

Design Settings

Rainfall Methodology FSR Return Period (years) 100 Additional Flow (%) 0

FSR Region Scotland and Ireland

M5-60 (mm) 19.000 Ratio-R 0.300 CV 0.750

Time of Entry (mins) 60.00

Maximum Time of Concentration (mins) 30.00

Maximum Rainfall (mm/hr) 50.0

Minimum Velocity (m/s) 1.00

Connection Type Level Soffits

Minimum Backdrop Height (m) 0.200

Preferred Cover Depth (m) 1.200

Include Intermediate Ground ✓
Enforce best practice design rules ✓

Nodes

Name	Area (ha)	T of E (mins)	Cover Level	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
			(m)				
30	0.017	60.00	64.857	1200	588101.671	575099.415	4.351
31	0.073	60.00	61.630	1200	588101.801	575050.376	2.757
32	0.033	60.00	61.764	1200	588149.382	575050.602	3.343
33	0.029	60.00	61.464	1200	588163.548	575055.533	4.106
34	0.135	60.00	59.550	1200	588235.554	575090.402	2.829
35	0.098	60.00	55.577	1200	588248.389	575064.396	4.063
36	0.049	60.00	53.610	1200	588267.833	575001.849	4.012
37	0.045	60.00	52.070	1200	588198.656	574977.047	2.987
38			51.857	1200	588188.632	574979.552	3.736
39	0.074	60.00	50.934	1350	588146.453	574965.064	4.970
40	0.049	60.00	48.320	1350	588056.458	574965.966	3.664
41	0.024	60.00	46.700	1350	588011.360	574964.831	3.533
42	0.034	60.00	45.000	1350	587982.683	574961.150	1.904
43	0.119	60.00	40.740	1350	587909.442	574950.451	1.575
44	0.053	60.00	35.422	1500	587908.031	574913.979	1.725
45	0.082	60.00	35.614	1500	587926.221	574904.484	5.105
46	0.143	60.00	33.640	1500	587922.873	574869.360	3.455
47			33.300	1800	587912.593	574865.443	3.138
48	0.023	60.00	31.300	1800	587897.007	574866.909	2.843
49			30.200	1500	587886.418	574863.818	1.766
61		60.00	59.380	1200	588244.174	575095.362	2.556
57	0.010	60.00	56.557	1200	588182.752	575043.109	3.349
50		60.00	61.500	1200	588095.446	575050.761	2.373
51	0.088	60.00	59.450	1200	588028.495	575053.328	2.108
52	0.072	60.00	52.380	1200	588022.269	575029.250	2.583
53			51.280	1200	588017.024	575001.813	6.606
54		60.00	56.391	1200	588176.197	575044.968	1.755
55	0.073	60.00	55.430	1200	588133.117	575029.230	1.425
56	0.056	60.00	53.826	1200	588081.077	575028.853	1.425
58		60.00	40.466	1200	587994.025	574924.871	1.425
60		60.00	36.470	1200	587995.906	574878.546	3.743
62			59.450	1200	588238.628	575078.369	6.570
59		60.00	38.672	1200	587994.850	574913.009	4.483
65	0.011	60.00	50.105	1200	588172.425	574964.950	1.936
63		60.00	50.363	1200	588271.550	574986.585	1.425
64	0.059	60.00	50.060	1200	588227.087	574970.525	1.425
66	0.071	60.00	47.216	1200	588074.823	574958.378	1.479
67	0.041	60.00	45.416	1200	588015.965	574956.543	1.300

File: Broomfield Midleton-RFI.; Network: Storm Network 2 George Forde 26/02/2024 Page 2 Residential Development Broomfield, Midleton, Co. Cork

<u>Links</u>

Name	US	DS	Length	ks (mm) /	US IL	DS IL	Fall	Slope	Dia	T of C	Rain
	Node	Node	(m)	n	(m)	(m)	(m)	(1:X)	(mm)	(mins)	(mm/hr)
1.000	30	31	49.039	0.600	60.506	58.873	1.633	30.0	225	30.00	50.0
1.001	31	32	47.582	0.600	58.873	58.421	0.452	105.3	225	30.00	50.0
1.002	32	33	15.000	0.600	58.421	57.358	1.063	14.1	225	30.00	50.0
1.003	33	34	80.004	0.600	57.358	56.721	0.637	125.7	225	30.00	50.0
1.004	34	62	12.419	0.600	56.721	52.880	3.841	3.2	225	30.00	50.0
1.006	35	36	65.500	0.600	51.514	49.673	1.841	35.6	225	30.00	50.0
1.007	36	37	73.489	0.600	49.598	49.083	0.515	142.8	300	30.00	50.0
1.008	37	38	10.332	0.600	49.083	48.121	0.962	10.7	300	30.00	50.0
1.009	38	39	44.598	0.600	48.121	45.964	2.158	20.7	300	30.00	50.0
1.010	39	40	90.000	0.600	45.964	44.731	1.232	73.0	300	30.00	50.0
1.011	40	41	45.112	0.600	44.656	44.517	0.139	324.5	375	30.00	50.0
1.012	41	42	28.912	0.600	43.167	43.096	0.071	407.2	450	30.00	50.0
1.013	42	43	74.018	0.600	43.096	39.165	3.931	18.8	375	30.00	50.0
1.014	43	44	36.499	0.600	39.165	33.847	5.318	6.9	375	30.00	50.0
1.015	44	45	20.519	0.600	33.697	33.655	0.042	488.5	525	30.00	50.0
1.016	45	46	35.283	0.600	30.509	30.185	0.324	108.8	525	30.00	50.0
1.017	46	47	11.001	0.600	30.185	30.162	0.023	478.3	525	30.00	50.0
1.018	47	48	15.655	0.600	30.162	28.457	1.705	9.2	525	30.00	50.0
1.019	48	49	11.031	0.600	28.457	28.434	0.023	479.6	525	30.00	50.0
2.000	61	34	9.945	0.600	56.824	56.721	0.103	96.6	225	30.00	50.0
3.000	57	35	69.003	0.600	53.208	52.801	0.407	169.5	225	30.00	50.0
6.000	50	51	67.000	0.600	59.127	57.417	1.710	39.2	225	30.00	50.0
6.001	51	52	24.870	0.600	57.342	49.797	7.545	3.3	300	30.00	50.0
5.003	52	53	27.934	0.600	49.797	44.674	5.122	5.5	300	30.00	50.0

Name	Vel (m/s)	Cap (I/s)	Flow (I/s)	US Depth	DS Depth	Σ Area (ha)	Σ Add Inflow	Pro Depth	Pro Velocity
1 000	2 200	05.3	2.2	(m)	(m)	0.017	(I/s)	(mm)	(m/s)
1.000	2.396	95.3	2.3	4.126	2.532	0.017	0.0	24	1.017
1.001	1.273	50.6	12.2	2.532	3.118	0.090	0.0	75	1.053
1.002	3.501	139.2	16.6	3.118	3.881	0.123	0.0	52	2.380
1.003	1.165	46.3	20.5	3.881	2.604	0.151	0.0	105	1.131
1.004	7.329	291.4	38.8	2.604	6.345	0.286	0.0	55	5.126
1.006	2.200	87.5	53.5	3.838	3.712	0.395	0.0	127	2.305
1.007	1.313	92.8	60.2	3.712	2.687	0.444	0.0	176	1.394
1.008	4.823	340.9	66.3	2.687	3.436	0.489	0.0	89	3.770
1.009	3.473	245.5	66.3	3.436	4.670	0.489	0.0	106	2.968
1.010	1.842	130.2	85.9	4.670	3.289	0.634	0.0	178	1.963
1.011	1.000	110.4	92.5	3.289	1.808	0.683	0.0	264	1.115
1.012	1.001	159.2	150.2	3.083	1.454	1.108	0.0	350	1.131
1.013	4.191	462.9	154.8	1.529	1.200	1.142	0.0	149	3.790
1.014	6.952	767.8	170.9	1.200	1.200	1.261	0.0	120	5.644
1.015	1.006	217.9	178.1	1.200	1.434	1.314	0.0	363	1.117
1.016	2.146	464.6	189.2	4.580	2.930	1.396	0.0	233	2.042
1.017	1.017	220.2	208.5	2.930	2.613	1.539	0.0	410	1.150
1.018	7.422	1606.7	208.5	2.613	2.318	1.539	0.0	126	5.196
1.019	1.016	219.9	211.6	2.318	1.241	1.561	0.0	417	1.149
2.000	1.330	52.9	0.0	2.331	2.604	0.000	0.0	0	0.000
3.000	1.001	39.8	1.4	3.124	2.551	0.010	0.0	29	0.469
6.000	2.096	83.3	0.0	2.148	1.808	0.000	0.0	0	0.000
6.001	8.717	616.2	11.9	1.808	2.283	0.088	0.0	28	3.465
5.003	6.774	478.8	39.2	2.283	6.306	0.289	0.0	58	4.149

File: Broomfield Midleton-RFI.; Network: Storm Network 2 George Forde 26/02/2024 Page 3 Residential Development Broomfield, Midleton, Co. Cork

<u>Links</u>

Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)
5.004	53	41	37.413	0.600	44.674	44.521	0.153	244.5	300	30.00	50.0
5.000	54	55	45.865	0.600	54.636	54.005	0.631	72.7	225	30.00	50.0
5.001	55	56	52.041	0.600	54.005	52.401	1.604	32.4	225	30.00	50.0
5.002	56	52	58.809	0.600	52.401	50.955	1.446	40.7	225	30.00	50.0
8.000	58	44	86.681	0.600	39.041	33.997	5.044	17.2	225	30.00	50.0
10.000	60	46	73.608	0.600	32.727	32.215	0.512	143.8	225	30.00	50.0
1.005	62	35	17.045	0.600	52.880	51.514	1.365	12.5	225	30.00	50.0
9.000	59	45	69.156	0.600	34.189	30.809	3.380	20.5	225	30.00	50.0
4.002	65	39	25.972	0.600	48.169	48.016	0.153	169.8	225	30.00	50.0
4.000	63	64	47.275	0.600	48.938	48.635	0.303	156.0	225	30.00	50.0
4.001	64	65	54.946	0.600	48.635	48.169	0.466	117.9	225	30.00	50.0
7.000	66	67	58.887	0.600	45.737	44.116	1.621	36.3	100	30.00	50.0
7.001	67	41	9.481	0.600	44.116	43.517	0.599	15.8	100	30.00	50.0

Name	Vel	Сар	Flow	US	DS	Σ Area	Σ Add	Pro	Pro
	(m/s)	(I/s)	(I/s)	Depth	Depth	(ha)	Inflow	Depth	Velocity
				(m)	(m)		(I/s)	(mm)	(m/s)
5.004	1.001	70.7	39.2	6.306	1.879	0.289	0.0	160	1.026
5.000	1.535	61.0	0.0	1.530	1.200	0.000	0.0	0	0.000
5.001	2.305	91.6	9.9	1.200	1.200	0.073	0.0	50	1.519
5.002	2.057	81.8	17.5	1.200	1.200	0.129	0.0	71	1.649
8.000	3.171	126.1	0.0	1.200	1.200	0.000	0.0	0	0.000
10.000	1.088	43.3	0.0	3.518	1.200	0.000	0.0	0	0.000
1.005	3.723	148.0	38.8	6.345	3.838	0.286	0.0	79	3.156
9.000	2.905	115.5	0.0	4.258	4.580	0.000	0.0	0	0.000
4.002	1.000	39.8	9.5	1.711	2.693	0.070	0.0	74	0.822
4.000	1.044	41.5	0.0	1.200	1.200	0.000	0.0	0	0.000
4.001	1.203	47.8	8.0	1.200	1.711	0.059	0.0	62	0.897
7.000	1.284	10.1	9.6	1.379	1.200	0.071	0.0	79	1.460
7.001	1.951	15.3	15.2	1.200	3.083	0.112	0.0	81	2.220

Pipeline Schedule

Link	Length (m)	Slope (1:X)	Dia (mm)	Link Type	US CL (m)	US IL (m)	US Depth (m)	DS CL (m)	DS IL (m)	DS Depth (m)
1.000	49.039	30.0	225	Circular	64.857	60.506	4.126	61.630	58.873	2.532
1.001	47.582	105.3	225	Circular	61.630	58.873	2.532	61.764	58.421	3.118
1.002	15.000	14.1	225	Circular	61.764	58.421	3.118	61.464	57.358	3.881
1.003	80.004	125.7	225	Circular	61.464	57.358	3.881	59.550	56.721	2.604
1.004	12.419	3.2	225	Circular	59.550	56.721	2.604	59.450	52.880	6.345
1.006	65.500	35.6	225	Circular	55.577	51.514	3.838	53.610	49.673	3.712
1.007	73.489	142.8	300	Circular	53.610	49.598	3.712	52.070	49.083	2.687
	121.		D:-	N11 -	5.411	D.C	D :-	N 11 -		

Link	US	Dia	Node	MH	DS	Dia	Node	MH	
	Node	(mm)	Type	Type	Node	(mm)	Type	Type	
1.000	30	1200	Manhole	Adoptable	31	1200	Manhole	Adoptable	
1.001	31	1200	Manhole	Adoptable	32	1200	Manhole	Adoptable	
1.002	32	1200	Manhole	Adoptable	33	1200	Manhole	Adoptable	
1.003	33	1200	Manhole	Adoptable	34	1200	Manhole	Adoptable	
1.004	34	1200	Manhole	Adoptable	62	1200	Manhole	Adoptable	
1.006	35	1200	Manhole	Adoptable	36	1200	Manhole	Adoptable	
1.007	36	1200	Manhole	Adoptable	37	1200	Manhole	Adoptable	

File: Broomfield Midleton-RFI.; Network: Storm Network 2 George Forde 26/02/2024 Page 4 Residential Development Broomfield, Midleton, Co. Cork

Pipeline Schedule

Link	Length	Slope	Dia	Link	US CL	US IL	US Depth	DS CL	DS IL	DS Depth
	(m)	(1:X)	(mm)	Type	(m)	(m)	(m)	(m)	(m)	(m)
1.008	10.332	10.7	300	Circular	52.070	49.083	2.687	51.857	48.121	3.436
1.009	44.598	20.7	300	Circular	51.857	48.121	3.436	50.934	45.964	4.670
1.010	90.000	73.0	300	Circular	50.934	45.964	4.670	48.320	44.731	3.289
1.011	45.112	324.5	375	Circular	48.320	44.656	3.289	46.700	44.517	1.808
1.012	28.912	407.2	450	Circular	46.700	43.167	3.083	45.000	43.096	1.454
1.013	74.018	18.8	375	Circular	45.000	43.096	1.529	40.740	39.165	1.200
1.014	36.499	6.9	375	Circular	40.740	39.165	1.200	35.422	33.847	1.200
1.015	20.519	488.5	525	Circular	35.422	33.697	1.200	35.614	33.655	1.434
1.016	35.283	108.8	525	Circular	35.614	30.509	4.580	33.640	30.185	2.930
1.017	11.001	478.3	525	Circular	33.640	30.185	2.930	33.300	30.162	2.613
1.018	15.655	9.2	525	Circular	33.300	30.162	2.613	31.300	28.457	2.318
1.019	11.031	479.6	525	Circular	31.300	28.457	2.318	30.200	28.434	1.241
2.000	9.945	96.6	225	Circular	59.380	56.824	2.331	59.550	56.721	2.604
3.000	69.003	169.5	225	Circular	56.557	53.208	3.124	55.577	52.801	2.551
6.000	67.000	39.2	225	Circular	61.500	59.127	2.148	59.450	57.417	1.808
6.001	24.870	3.3	300	Circular	59.450	57.342	1.808	52.380	49.797	2.283
5.003	27.934	5.5	300	Circular	52.380	49.797	2.283	51.280	44.674	6.306
5.004	37.413	244.5	300	Circular	51.280	44.674	6.306	46.700	44.521	1.879
5.000	45.865	72.7	225	Circular	56.391	54.636	1.530	55.430	54.005	1.200
5.001	52.041	32.4	225	Circular	55.430	54.005	1.200	53.826	52.401	1.200
5.002	58.809	40.7	225	Circular	53.826	52.401	1.200	52.380	50.955	1.200
8.000	86.681	17.2	225	Circular	40.466	39.041	1.200	35.422	33.997	1.200
10.000	73.608	143.8	225	Circular	36.470	32.727	3.518	33.640	32.215	1.200
1.005	17.045	12.5	225	Circular	59.450	52.880	6.345	55.577	51.514	3.838
9.000	69.156	20.5	225	Circular	38.672	34.189	4.258	35.614	30.809	4.580

Link	US	Dia	Node	МН	DS	Dia	Node	МН
	Node	(mm)	Type	Type	Node	(mm)	Type	Type
1.008	37	1200	Manhole	Adoptable	38	1200	Manhole	Adoptable
1.009	38	1200	Manhole	Adoptable	39	1350	Manhole	Adoptable
1.010	39	1350	Manhole	Adoptable	40	1350	Manhole	Adoptable
1.011	40	1350	Manhole	Adoptable	41	1350	Manhole	Adoptable
1.012	41	1350	Manhole	Adoptable	42	1350	Manhole	Adoptable
1.013	42	1350	Manhole	Adoptable	43	1350	Manhole	Adoptable
1.014	43	1350	Manhole	Adoptable	44	1500	Manhole	Adoptable
1.015	44	1500	Manhole	Adoptable	45	1500	Manhole	Adoptable
1.016	45	1500	Manhole	Adoptable	46	1500	Manhole	Adoptable
1.017	46	1500	Manhole	Adoptable	47	1800	Manhole	Adoptable
1.018	47	1800	Manhole	Adoptable	48	1800	Manhole	Adoptable
1.019	48	1800	Manhole	Adoptable	49	1500	Manhole	Adoptable
2.000	61	1200	Manhole	Adoptable	34	1200	Manhole	Adoptable
3.000	57	1200	Manhole	Adoptable	35	1200	Manhole	Adoptable
6.000	50	1200	Manhole	Adoptable	51	1200	Manhole	Adoptable
6.001	51	1200	Manhole	Adoptable	52	1200	Manhole	Adoptable
5.003	52	1200	Manhole	Adoptable	53	1200	Manhole	Adoptable
5.004	53	1200	Manhole	Adoptable	41	1350	Manhole	Adoptable
5.000	54	1200	Manhole	Adoptable	55	1200	Manhole	Adoptable
5.001	55	1200	Manhole	Adoptable	56	1200	Manhole	Adoptable
5.002	56	1200	Manhole	Adoptable	52	1200	Manhole	Adoptable
8.000	58	1200	Manhole	Adoptable	44	1500	Manhole	Adoptable
10.000	60	1200	Manhole	Adoptable	46	1500	Manhole	Adoptable
1.005	62	1200	Manhole	Adoptable	35	1200	Manhole	Adoptable
9.000	59	1200	Manhole	Adoptable	45	1500	Manhole	Adoptable

File: Broomfield Midleton-RFI.; Network: Storm Network 2 George Forde 26/02/2024 Page 5 Residential Development Broomfield, Midleton, Co. Cork

Pipeline Schedule

Link	Length	Slope	Dia	Link	US CL	US IL	US Depth	DS CL	DS IL	DS Depth
	(m)	(1:X)	(mm)	Type	(m)	(m)	(m)	(m)	(m)	(m)
4.002	25.972	169.8	225	Circular	50.105	48.169	1.711	50.934	48.016	2.693
4.000	47.275	156.0	225	Circular	50.363	48.938	1.200	50.060	48.635	1.200
4.001	54.946	117.9	225	Circular	50.060	48.635	1.200	50.105	48.169	1.711
7.000	58.887	36.3	100	Circular	47.216	45.737	1.379	45.416	44.116	1.200
7.001	9.481	15.8	100	Circular	45.416	44.116	1.200	46.700	43.517	3.083

Li	nk	US	Dia	Node	MH	DS	Dia	Node	MH
		Node	(mm)	Type	Type	Node	(mm)	Type	Type
4.0	002	65	1200	Manhole	Adoptable	39	1350	Manhole	Adoptable
4.0	000	63	1200	Manhole	Adoptable	64	1200	Manhole	Adoptable
4.0	001	64	1200	Manhole	Adoptable	65	1200	Manhole	Adoptable
7.0	000	66	1200	Manhole	Adoptable	67	1200	Manhole	Adoptable
7.0	001	67	1200	Manhole	Adoptable	41	1350	Manhole	Adoptable

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	Link	IL (m)	Dia (mm)
30	588101.671	575099.415	64.857	4.351	1200	\bigcirc			
							1.000	60.506	225
31	588101.801	575050.376	61.630	2.757	1200	1 1	1.000	58.873	225
						0	1.001	58.873	225
32	588149.382	575050.602	61.764	3.343	1200	1	1.001	58.421	225
						0	1.002	58.421	225
33	588163.548	575055.533	61.464	4.106	1200	1	1.002	57.358	225
						0	1.003	57.358	225
34	588235.554	575090.402	59.550	2.829	1200	1	2.000	56.721	225
						2	1.003	56.721	225
						, O	1.004	56.721	225
35	588248.389	575064.396	55.577	4.063	1200	2 1	3.000 1.005	52.801 51.514	225 225
						0	1.006	51.514	225
36	588267.833	575001.849	53.610	4.012	1200	1 1	1.006	49.673	225
						0	1.007	49.598	300
37	588198.656	574977.047	52.070	2.987	1200	0 1	1.007	49.083	300
						0	1.008	49.083	300

File: Broomfield Midleton-RFI.; Network: Storm Network 2 George Forde 26/02/2024 Page 6 Residential Development Broomfield, Midleton, Co. Cork

Manhole Schedule

Nada	Faatin a	Nauthina	CI	Damah	D:-	Commontions	1:		D:-
Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	Link	IL (m)	Dia (mm)
38	588188.632	574979.552	51.857	3.736	1200	1	1.008	48.121	300
						0 2 1	1 000	10 121	200
39	588146.453	574965.064	50.934	4.970	1350	0		48.121 48.016	300 225
39	388140.433	374903.004	30.334	4.570	1330	2 2		45.964	300
						0 ← 1	1.003	13.301	300
						0	1.010	45.964	300
40	588056.458	574965.966	48.320	3.664	1350	1	1.010	44.731	300
						0 <			
							1 011	44.656	275
41	588011.360	574964.831	46.700	3.533	1350	2 1		44.656 43.517	375 100
41	366011.300	374304.631	40.700	3.333	1330			44.521	300
						0 ← 3 3		44.517	375
						1 0		43.167	450
42	587982.683	574961.150	45.000	1.904	1350	1		43.096	450
						\bigcirc 1			
						0 <			
						0		43.096	375
43	587909.442	574950.451	40.740	1.575	1350	1	1.013	39.165	375
						J 0	1.014	39.165	375
44	587908.031	574913.979	35.422	1.725	1500	² 1		33.997	225
	507500.00=	07.10.201070	001.122					33.847	375
						Z,			
						0		33.697	525
45	587926.221	574904.484	35.614	5.105	1500	1		30.809	225
						2	1.015	33.655	525
							1.016	30.509	525
46	587922.873	574869.360	33.640	3.455	1500	2 1		32.215	225
40	307322.073	374003.300	33.040	3.433	1300	, 2		30.185	525
						0			
						0	1.017	30.185	525
47	587912.593	574865.443	33.300	3.138	1800	1	1.017	30.162	525
						0 <			
							1 010	20.162	F2F
48	587897.007	574866.909	31.300	2.843	1800	0		30.162 28.457	525 525
40	387897.007	374800.909	31.300	2.043	1800	1	1.016	20.437	323
						0 < 1			
						0	1.019	28.457	525
49	587886.418	574863.818	30.200	1.766	1500	1	1.019	28.434	525
<u></u>	E00244 474	E7E00E 2C2	E0 200	2 550	1200				
61	588244.174	575095.362	59.380	2.556	1200				
						0	2.000	56.824	225
									-

File: Broomfield Midleton-RFI.; Network: Storm Network 2 George Forde 26/02/2024 Page 7 Residential Development Broomfield, Midleton, Co. Cork

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connection	s	Link	IL (m)	Dia (mm)
57	588182.752	575043.109	56.557	3.349	1200	→ 0				
							0	3.000	53.208	225
50	588095.446	575050.761	61.500	2.373	1200	0 ←				
	E00020 40E	F7F0F2 220	FO 4FO	2.400	1200		0	6.000	59.127	225
51	588028.495	575053.328	59.450	2.108	1200	— 1	1	6.000	57.417	225
						0	0	6.001	57.342	300
52	588022.269	575029.250	52.380	2.583	1200		1	6.001	49.797	300
						2	2	5.002 5.003	50.955 49.797	300
53	588017.024	575001.813	51.280	6.606	1200	1	1	5.003	44.674	300
	000027702	0.000=.0=0	02.200	0.000		ϕ		0.000		
	500475 407		EC 201	4 7	4000	o ^V	0	5.004	44.674	300
54	588176.197	575044.968	56.391	1.755	1200	•				
							0	5.000	54.636	225
55	588133.117	575029.230	55.430	1.425	1200	0 ← 1	1	5.000	54.005	225
							0	5.001	54.005	225
56	588081.077	575028.853	53.826	1.425	1200	0 ←1	1	5.001	52.401	225
	587994.025	F74024 971	10.466	1.425	1200		0	5.002	52.401	225
58	387994.025	574924.871	40.466	1.425	1200	0←				
60	587995.906	574878.546	36.470	3.743	1200		0	8.000	39.041	225
00	387993.900	374676.340	30.470	3.743	1200	0←				
							0	10.000	32.727	225
62	588238.628	575078.369	59.450	6.570	1200		1	1.004	52.880	225
						, o	0	1.005	52.880	225
59	587994.850	574913.009	38.672	4.483	1200	0 ←				
<u></u>	E00472 425	F74004 050	FO 405	4.000	1202		0	9.000	34.189	225
65	588172.425	574964.950	50.105	1.936	1200	0 ← 1	1	4.001	48.169	225
							0	4.002	48.169	225

File: Broomfield Midleton-RFI.; Network: Storm Network 2 George Forde 26/02/2024

Page 8 Residential Development Broomfield, Midleton, Co. Cork

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections		Link	IL (m)	Dia (mm)
63	588271.550	574986.585	50.363	1.425	1200	0				
							0	4.000	48.938	225
64	588227.087	574970.525	50.060	1.425	1200		1	4.000	48.635	225
						0 <				
							0	4.001	48.635	225
66	588074.823	574958.378	47.216	1.479	1200					
						0 ←				
							0	7.000	45.737	100
67	588015.965	574956.543	45.416	1.300	1200	•	1	7.000	44.116	100
						1	0	7.001	44.116	100

Simulation Settings

Rainfa	ll Methodology	FSR	Drain Down Time (mins)	240
	FSR Region	Scotland and Ireland	Additional Storage (m³/ha)	20.0
	M5-60 (mm)	19.000	Check Discharge Rate(s)	\checkmark
	Ratio-R	0.300	1 year (l/s)	20.2
	Summer CV	0.750	30 year (I/s)	40.2
	Winter CV	0.840	100 year (l/s)	47.7
	Analysis Speed	Normal	Check Discharge Volume	\checkmark
Sł	kip Steady State	\checkmark	100 year 360 minute (m³)	1702

Storm Durations											
15	30	60	120	180	240	360	480	600	720	960	1440

Return Period (years)	Climate Change (CC %)	Additional Area (A %)	Additional Flow (Q %)	
5	10	0	0	
10	10	0	0	
30	10	0	0	
100	20	0	0	

Pre-development Discharge Rate

Site Makeup	Greenfield	Growth Factor 30 year	1.65
Greenfield Method	IH124	Growth Factor 100 year	1.96
Positively Drained Area (ha)	7.950	Betterment (%)	0
SAAR (mm)	1091	QBar	24.4
Soil Index	2	Q 1 year (I/s)	20.2
SPR	0.30	Q 30 year (I/s)	40.2
Region	11	Q 100 year (I/s)	47.7
Growth Factor 1 year	0.83		

Brian O'Kennedy and Associate Shannon House

Church Road Douglas, Cork

George Forde 26/02/2024

File: Broomfield Midleton-RFI.;

Network: Storm Network 2

Page 9

Residential Development

Broomfield, Midleton, Co. Cork

Pre-development Discharge Volume

Site Makeup Greenfield Return Period (years) 100
Greenfield Method FSR/FEH Climate Change (%) 0
Positively Drained Area (ha) 7.950 Storm Duration (mins) 360
Soil Index 2 Betterment (%) 0
SPR 0.30 PR 0.341
CWI 125.228 Runoff Volume (m³) 1702

Node 48 Online Hydro-Brake® Control

Flap Valve	Х	Objective	(HE) Minimise upstream storage
Replaces Downstream Link	Х	Sump Available	\checkmark
Invert Level (m)	28.457	Product Number	CTL-SHE-0192-2200-2000-2200
Design Depth (m)	2.000	Min Outlet Diameter (m)	0.225
Design Flow (I/s)	22.0	Min Node Diameter (mm)	1800

Node 65 Online Hydro-Brake® Control

Flap Valve	\checkmark	Objective	(HE) Minimise upstream storage
Replaces Downstream Link	Х	Sump Available	\checkmark
Invert Level (m)	48.169	Product Number	CTL-SHE-0061-2000-1500-2000
Design Depth (m)	1.500	Min Outlet Diameter (m)	0.075
Design Flow (I/s)	2.0	Min Node Diameter (mm)	1200

Node 67 Online Hydro-Brake® Control

Flap Valve	X	Objective	(HE) Minimise upstream storage
Replaces Downstream Link	Х	Sump Available	\checkmark
Invert Level (m)	44.116	Product Number	CTL-SHE-0073-2800-1500-2800
Design Depth (m)	1.500	Min Outlet Diameter (m)	0.100
Design Flow (I/s)	2.8	Min Node Diameter (mm)	1200

Node 47 Depth/Area Storage Structure

BRE-365: Volume (m³)	2.112	Base Inf Coefficient (m/hr)	0.35660	Invert Level (m)	30.162
BRE-365: Area (m²)	8.080	Side Inf Coefficient (m/hr)	0.00000	Time to half empty (mins)	93
BRE-365: Time (hrs)	0.733	Safety Factor	2.0		
BRE-365: Inf Coef (m/hr)	0.35660	Porosity	1.00		

Depth	Area	Inf Area	Depth	Area	Inf Area	Depth	Area	Inf Area
(m)	(m²)	(m²)	(m)	(m²)	(m²)	(m)	(m²)	(m²)
0.000	110.0	110.0	1.000	110.0	110.0	1.100	0.0	110.0

Node 31 Depth/Area Storage Structure

BRE-365: Volume (m³)	1.138	Base Inf Coefficient (m/hr)	0.54637	Invert Level (m)	59.830
BRE-365: Area (m²)	4.460	Side Inf Coefficient (m/hr)	0.54637	Time to half empty (mins)	0
BRE-365: Time (hrs)	0.467	Safety Factor	2.0		
BRE-365: Inf Coef (m/hr)	0.54637	Porosity	1.00		

•		Inf Area (m²)						
0.000	3/I N	3/1 0	1 100	3/I N	3/1.0	1 767	102 O	102.0

File: Broomfield Midleton-RFI.; Network: Storm Network 2 George Forde 26/02/2024 Page 10 Residential Development Broomfield, Midleton, Co. Cork

Node 65 Depth/Area Storage Structure

BRE-365: Volume (m³) 1.831 BRE-365: Area (m²) 6.550 BRE-365: Time (hrs) 0.258 BRE-365: Inf Coef (m/hr) 1.08350 Base Inf Coefficient (m/hr) 1.08350
Side Inf Coefficient (m/hr) 1.08350
Safety Factor 2.0
Porosity 1.00

Invert Level (m) 48.169 Time to half empty (mins) 0

Depth	Area	Inf Area	Depth	Area	Inf Area	Depth	Area	Inf Area
(m)	(m²)	(m²)	(m)	(m²)	(m²)	(m)	(m²)	(m²)
0.000	194.0	194.0	1.100	194.0	194.0	1.767	582.0	582.0

Node 67 Depth/Area Storage Structure

BRE-365: Volume (m³) 1.831 BRE-365: Area (m²) 6.550 BRE-365: Time (hrs) 0.258 BRE-365: Inf Coef (m/hr) 1.08350 Base Inf Coefficient (m/hr) 1.08350 Side Inf Coefficient (m/hr) 1.08350 Safety Factor 2.0 Porosity 1.00 Invert Level (m) 44.116
Time to half empty (mins) 0

Depth	Area	Inf Area	Depth	Area	Inf Area	Depth	Area	Inf Area
(m)	(m²)	(m²)	(m)	(m²)	(m²)	(m)	(m²)	(m²)
0.000	110.0	110.0	1.100	110.0	110.0	1.767	330.0	330.0

File: Broomfield Midleton-RFI.; Network: Storm Network 2 George Forde 26/02/2024 Page 11 Residential Development Broomfield, Midleton, Co. Cork

Results for 5 year +10% CC Critical Storm Duration. Lowest mass balance: 99.05%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status	
120 minute winter		90	60.521	0.015	0.9	0.0186	0.0000	ОК	
120 minute winter		92	58.921	0.048	4.6	0.0100	0.0000	OK	
120 miliate winter	31	32	30.321	0.040	4.0	0.0003	0.0000		
120 minute winter	32	92	58.453	0.032	6.3	0.0431	0.0000	OK	
120 minute winter	33	92	57.426	0.068	7.7	0.0864	0.0000	OK	
120 minute winter	34	92	56.755	0.034	14.5	0.0702	0.0000	OK	
120 minute winter	35	92	51.588	0.074	19.8	0.1186	0.0000	OK	
120 minute winter	36	92	49.707	0.109	22.3	0.1502	0.0000	OK	
120 minute winter	37	94	49.139	0.056	24.6	0.0799	0.0000	OK	
120 minute winter	38	94	48.185	0.064	24.6	0.0721	0.0000	OK	
120 minute winter	39	94	46.059	0.096	28.3	0.1653	0.0000	OK	
120 minute winter	40	94	44.795	0.138	30.8	0.2352	0.0000	OK	
120 minute winter	41	94	43.327	0.161	46.6	0.2520	0.0000	OK	
120 minute winter	42	94	43.181	0.085	48.3	0.1515	0.0000	OK	
120 minute winter	43	94	39.234	0.069	54.3	0.2020	0.0000	OK	
120 minute winter	44	94	33.882	0.185	56.9	0.4397	0.0000	OK	
120 minute winter	45	132	31.108	0.599	61.0	1.2501	0.0000	SURCHARGED	
120 minute winter	46	132	31.107	0.922	68.1	2.3891	0.0000	SURCHARGED	
120 minute winter	47	132	31.106	0.944	68.5	106.2409	0.0000	SURCHARGED	
120 minute winter	48	132	31.105	2.648	61.0	7.1663	0.0000	FLOOD RISK	
120 minute winter		132	28.535	0.102	24.6	0.0000	0.0000	OK	
15 minute summe		1	56.824	0.000	0.0	0.0000	0.0000	OK	
120 minute winter		106	53.226	0.018	0.5	0.0212	0.0000	OK	
15 minute summe	r 50	1	59.127	0.000	0.0	0.0000	0.0000	OK	
Link Event	US	Link	DS	Outflow		-	•	nk Discharg	
(Upstream Depth)	Node		Node	(I/s)	(m/:	s)	Vol	(m³) Vol (m³)	
(Upstream Depth) 120 minute winter	Node 30	1.000	Node 31	(I/s) 0.9	(m/ :	s) 255 0.	Vol 009 0.	(m³) Vol (m³) 1814	
(Upstream Depth) 120 minute winter 120 minute winter	Node 30 31	1.000 1.001	Node 31 32	(I/s) 0.9 4.6	(m/s 0.2 5 0.9	s) 255 0.	Vol 009 0.	(m³) Vol (m³)	
(Upstream Depth) 120 minute winter 120 minute winter 120 minute winter	Node 30 31 31	1.000 1.001 Infiltration	Node 31 32	(I/s) 0.9 4.6 0.0	(m/ 9 0.2 5 0.9	s) 255 0. 944 0.	Vol 009 0. 090 0.	(m³) Vol (m³) 1814 2323	
(Upstream Depth) 120 minute winter 120 minute winter 120 minute winter 120 minute winter	Node 30 31 31 32	1.000 1.001 Infiltration 1.002	Node 31 32 1 33	(I/s) 0.9 4.6 0.0 6.3	(m/s 0.2 5 0.9 0 8 0.9	s) 255 0. 044 0.	Vol 009 0. 090 0. 045 0.	(m³) Vol (m³) 1814 2323 1022	
(Upstream Depth) 120 minute winter	Node 30 31 31 32 33	1.000 1.001 Infiltration 1.002 1.003	Node 31 32 33 34	(I/s) 0.9 4.6 0.0 6.3 7.7	(m/s 0.2 5 0.9 0 3 0.9 7 1.1	ss) 255 0. 044 0. 049 0. 041 0.	Vol 009 0. 090 0. 045 0. 165 0.	(m³) Vol (m³) 1814 2323 1022 5526	
(Upstream Depth) 120 minute winter	Node 30 31 31 32 33 34	1.000 1.001 Infiltration 1.002 1.003 1.004	Node 31 32 33 34 62	(I/s) 0.9 4.6 0.0 6.3 7.7	(m/s 0.2 5 0.9 0.9 0.9 7 1.1 4 2.9	ss) 255 0. 244 0. 249 0. 241 0. 287 0.	Vol 009 0. 090 0. 045 0. 165 0. 050 0.	(m³) Vol (m³) 1814 2323 1022 5526 0606	
(Upstream Depth) 120 minute winter	Node 30 31 31 32 33 34 35	1.000 1.001 Infiltration 1.002 1.003 1.004 1.006	Node 31 32 33 34 62 36	(I/s) 0.9 4.6 0.0 6.3 7.7 14.4 19.8	(m/s 0.2 5 0.9 0.9 7 1.1 4 2.9 3 1.7	s) 255 0. 244 0. 249 0. 441 0. 287 0. 279 0.	Vol 009 0. 090 0. 045 0. 165 0. 050 0. 227 0.	(m³) Vol (m³) 1814 2323 1022 5526 0606 7301	
(Upstream Depth) 120 minute winter	Node 30 31 31 32 33 34 35 36	1.000 1.001 Infiltration 1.002 1.003 1.004 1.006 1.007	Node 31 32 33 34 62 36 37	(I/s) 0.9 4.6 0.0 6.3 7.7 14.4 19.8 22.3	(m/s 0.2 0.9 0.9 0.9 0.9 7 1.1 1.2.9 1.7 1.7	s) 255 0. 244 0. 249 0. 441 0. 287 0. 279 0.	Vol 009 0. 090 0. 045 0. 165 0. 050 0. 227 0.	(m³) Vol (m³) 1814 2323 1022 5526 0606 7301 1812	
(Upstream Depth) 120 minute winter	Node 30 31 31 32 33 34 35 36 37	1.000 1.001 Infiltration 1.002 1.003 1.004 1.006 1.007	Node 31 32 33 34 62 36 37 38	(I/s) 0.9 4.6 0.0 6.3 7.7 14.4 19.8 22.3	(m/s 0.2 5 0.9 0.9 7 1.1 4 2.9 3 1.7 3 1.4 5 2.4	ss) 255 0. 244 0. 249 0. 241 0. 279 0. 221 0.	Vol 009 0. 090 0. 045 0. 165 0. 050 0. 227 0. 240 1. 072 0.	(m³) Vol (m³) 1814 2323 1022 5526 0606 7301 1812 1029	
(Upstream Depth) 120 minute winter	Node 30 31 31 32 33 34 35 36 37 38	1.000 1.001 Infiltration 1.002 1.003 1.004 1.006 1.007 1.008 1.009	Node 31 32 33 34 62 36 37 38 39	(I/s) 0.9 4.6 0.0 6.3 7.7 14.4 19.8 22.3 24.6	(m/s 0.2 6 0.9 3 0.9 7 1.1 4 2.9 3 1.7 3 1.4 5 2.4 5 1.6	s) 255 0. 244 0. 249 0. 241 0. 287 0. 279 0. 221 0. 266 0.	Vol 009 0. 090 0. 045 0. 165 0. 050 0. 227 0. 240 1. 072 0. 100 0.	(m³) Vol (m³) 1814 2323 1022 5526 0606 7301 1812 1029 6735	
(Upstream Depth) 120 minute winter	Node 30 31 31 32 33 34 35 36 37 38 39	1.000 1.001 Infiltration 1.002 1.003 1.004 1.006 1.007 1.008 1.009 1.010	Node 31 32 33 34 62 36 37 38 39 40	(I/s) 0.9 4.6 0.0 6.3 7.7 14.4 19.8 22.3 24.6 28.3	(m/s 0.2 5 0.9 0.9 7 1.1 4 2.9 3 1.7 3 1.4 5 2.4 5 1.6 3 1.4	1255 O. 1244 O	Vol 009 0. 090 0. 045 0. 165 0. 050 0. 227 0. 240 1. 072 0. 100 0. 218 1.	(m³) Vol (m³) 1814 2323 1022 5526 0606 7301 1812 1029 6735 7192	
(Upstream Depth) 120 minute winter	Node 30 31 31 32 33 34 35 36 37 38 39 40	1.000 1.001 Infiltration 1.002 1.003 1.004 1.006 1.007 1.008 1.009 1.010 1.011	Node 31 32 33 34 62 36 37 38 39 40 41	(I/s) 0.9 4.6 0.0 6.3 7.7 14.4 19.8 22.3 24.6 28.3 30.8	(m/s 0.2 5 0.9 7 1.1 4 2.9 3 1.7 3 1.4 5 2.4 5 1.6 3 0.8	s) 255 0. 244 0. 249 0. 241 0. 279 0. 221 0. 276 0. 246 0. 283 0. 290 0.	Vol 009 0. 090 0. 045 0. 165 0. 050 0. 227 0. 240 1. 072 0. 100 0. 218 1. 279 1.	(m³) Vol (m³) 1814 2323 1022 5526 0606 7301 1812 1029 6735 7192 5627	
(Upstream Depth) 120 minute winter	Node 30 31 31 32 33 34 35 36 37 38 39 40 41	1.000 1.001 Infiltration 1.002 1.003 1.004 1.006 1.007 1.008 1.009 1.010 1.011 1.012	Node 31 32 33 34 62 36 37 38 39 40 41 42	(I/s) 0.9 4.6 0.0 6.3 7.7 14.4 19.8 22.3 24.6 28.3 30.8	(m/s 0.2 0.9 0.9 7 1.1 4 2.9 3 1.7 3 1.4 5 2.4 5 1.6 3 0.8 6 1.3	ss) 255 0. 244 0. 249 0. 241 0. 279 0. 221 0. 276 0. 246 0. 283 0. 290 0.	Vol 009 0. 009 0. 045 0. 165 0. 050 0. 227 0. 240 1. 072 0. 100 0. 218 1. 279 1.	(m³) Vol (m³) 1814 2323 1022 5526 0606 7301 1812 1029 6735 7192 5627 0327	
(Upstream Depth) 120 minute winter	Node 30 31 31 32 33 34 35 36 37 38 39 40 41 42	1.000 1.001 Infiltration 1.002 1.003 1.004 1.006 1.007 1.008 1.009 1.010 1.011 1.012 1.013	Node 31 32 33 34 62 36 37 38 39 40 41 42 43	(I/s) 0.9 4.6 0.0 6.3 7.7 14.4 19.8 22.3 24.6 28.3 30.8 46.6 48.3	(m/s 0.2 0.9 0.9 0.9 0.9 7 1.1 4 2.9 3 1.7 3 1.4 5 1.6 1.6 3 1.3 1.3 1.3 1.3 1.3 1.4 1.5 1.6 1.6 1.6 1.7 1.7 1.7 1.8 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	ss) 255 0. 244 0. 249 0. 241 0. 279 0. 221 0. 276 0. 246 0. 283 0. 289 0. 287 0.	Vol 009 0. 090 0. 045 0. 165 0. 050 0. 227 0. 240 1. 072 0. 100 0. 218 1. 279 1. 293 1.	(m³) Vol (m³) 1814 2323 1022 5526 0606 7301 1812 1029 6735 7192 5627 0327 1995	
(Upstream Depth) 120 minute winter	Node 30 31 31 32 33 34 35 36 37 38 39 40 41 42 43	1.000 1.001 Infiltration 1.002 1.003 1.004 1.006 1.007 1.008 1.009 1.010 1.011 1.012 1.013 1.014	Node 31 32 33 34 62 36 37 38 39 40 41 42 43 44	(I/s) 0.9 4.6 0.0 6.3 7.7 14.4 19.8 22.3 24.6 28.3 30.8 46.6 48.3	(m/s 0.2 0.9 0.9 7 1.1 4 2.9 3 1.7 3 1.4 5 1.6 3 1.3 3 3 4.0 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	ss) 255 0. 244 0. 249 0. 241 0. 279 0. 279 0. 276 0. 246 0. 283 0. 283 0. 287 0. 287 0.	Vol 009 0. 045 0. 165 0. 050 0. 227 0. 240 1. 072 0. 100 0. 218 1. 279 1. 293 1. 104 1. 071 0.	(m³) Vol (m³) 1814 2323 1022 5526 0606 7301 1812 1029 6735 7192 5627 0327 1995 4921	
(Upstream Depth) 120 minute winter	Node 30 31 31 32 33 34 35 36 37 38 39 40 41 42 43 44	1.000 1.001 Infiltration 1.002 1.003 1.004 1.006 1.007 1.008 1.009 1.010 1.011 1.012 1.013 1.014 1.015	Node 31 32 33 34 62 36 37 38 39 40 41 42 43 44 45	(I/s) 0.9 4.6 0.0 6.3 7.7 14.4 19.8 22.3 24.6 28.3 30.8 46.6 48.3 54.3	(m/s 0.2 5 0.9 0.9 7 1.1 4 2.9 3 1.7 3 1.4 5 2.4 5 1.6 3 0.8 5 1.3 3 0.8 6 0.9	55) 0.555 0.044 0.049 0.41 0.087 0.079 0.121 0.076 0.133 0.083 0.0	Vol 009 0. 009 0. 045 0. 165 0. 050 0. 227 0. 240 1. 072 0. 100 0. 218 1. 279 1. 293 1. 104 1. 071 0. 261 1.	(m³) Vol (m³) 1814 2323 1022 5526 0606 7301 1812 1029 6735 7192 5627 0327 1995 4921 2490	
(Upstream Depth) 120 minute winter	Node 30 31 31 32 33 34 35 36 37 38 39 40 41 42 43	1.000 1.001 Infiltration 1.002 1.003 1.004 1.006 1.007 1.008 1.009 1.010 1.011 1.012 1.013 1.014	Node 31 32 33 34 62 36 37 38 39 40 41 42 43 44	(I/s) 0.9 4.6 0.0 6.3 7.7 14.4 19.8 22.3 24.6 28.3 30.8 46.6 48.3	(m/s 0.2 0.9 0.9 7 1.1 4 2.9 3 1.7 3 1.4 5 2.4 5 1.6 3 0.8 7 1.3 9 0.9 9 1.0	s) 255 0. 244 0. 249 0. 241 0. 279 0. 221 0. 276 0. 246 0. 283 0. 290 0. 232 0. 287 0. 291 0.	Vol 009 0. 045 0. 165 0. 050 0. 227 0. 240 1. 072 0. 100 0. 218 1. 279 1. 293 1. 071 0. 261 1. 131 7.	(m³) Vol (m³) 1814 2323 1022 5526 0606 7301 1812 1029 6735 7192 5627 0327 1995 4921	
(Upstream Depth) 120 minute winter	Node 30 31 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	1.000 1.001 Infiltration 1.002 1.003 1.004 1.006 1.007 1.008 1.009 1.010 1.011 1.012 1.013 1.014 1.015 1.016	Node 31 32 33 34 62 36 37 38 39 40 41 42 43 44 45 46	(I/s) 0.9 4.6 0.0 6.3 7.7 14.4 19.8 22.3 24.6 24.6 48.3 56.9 60.9	(m/s 0.2 0.9 0.9 7 1.1 4 2.9 3 1.7 3 1.4 5 2.4 5 1.6 3 0.8 6 1.3 3 0.9 9 1.0 2 1.6	ss) 255 0. 244 0. 249 0. 241 0. 279 0. 221 0. 276 0. 246 0. 283 0. 287 0. 232 0. 287 0. 255 0. 269 0.	Vol 009 0. 045 0. 165 0. 050 0. 227 0. 240 1. 072 0. 100 0. 218 1. 279 1. 293 1. 104 1. 071 0. 261 1. 131 7. 292 2.	(m³) Vol (m³) 1814 2323 1022 5526 0606 7301 1812 1029 6735 7192 5627 0327 1995 4921 2490 6223	
(Upstream Depth) 120 minute winter	Node 30 31 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	1.000 1.001 Infiltration 1.002 1.003 1.004 1.006 1.007 1.008 1.009 1.010 1.011 1.012 1.013 1.014 1.015 1.016 1.017	Node 31 32 33 34 62 36 37 38 39 40 41 42 43 44 45 46 47 48	(I/s) 0.9 4.6 0.0 6.3 7.7 14.4 19.8 22.3 24.6 24.6 28.3 30.8 46.6 48.3 56.9 60.9	(m/s) 0.2 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	ss) 255 0. 244 0. 249 0. 241 0. 279 0. 221 0. 276 0. 246 0. 283 0. 287 0. 232 0. 287 0. 255 0. 269 0.	Vol 009 0. 045 0. 165 0. 050 0. 227 0. 240 1. 072 0. 100 0. 218 1. 279 1. 293 1. 104 1. 071 0. 261 1. 131 7. 292 2.	(m³) Vol (m³) 1814 2323 1022 5526 0606 7301 1812 1029 6735 7192 5627 0327 1995 4921 2490 6223 3766	
(Upstream Depth) 120 minute winter	Node 30 31 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	1.000 1.001 Infiltration 1.002 1.003 1.004 1.006 1.007 1.008 1.009 1.010 1.011 1.012 1.013 1.014 1.015 1.016 1.017	Node 31 32 33 34 62 36 37 38 39 40 41 42 43 44 45 46 47 48	(I/s) 0.9 4.6 0.0 6.3 7.7 14.4 19.8 22.3 24.6 24.6 48.3 56.9 60.9 64.2	(m/s 0.2 0.9 0.9 7 1.1 4 2.9 3 1.7 3 1.4 5 2.4 5 1.6 3 0.8 1.3 3 4.0 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	s) 255 0. 244 0. 249 0. 241 0. 279 0. 221 0. 276 0. 246 0. 283 0. 287 0. 290 0. 215 0. 267 0. 268 0. 277 0.	Vol 009 0. 045 0. 165 0. 050 0. 227 0. 240 1. 072 0. 100 0. 218 1. 279 1. 279 1. 279 1. 261 1. 131 7. 292 2. 037 3.	(m³) Vol (m³) 1814 2323 1022 5526 0606 7301 1812 1029 6735 7192 5627 0327 1995 4921 2490 6223 3766	
(Upstream Depth) 120 minute winter	Node 30 31 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 47 48	1.000 1.001 Infiltration 1.002 1.003 1.004 1.006 1.007 1.008 1.009 1.010 1.011 1.012 1.013 1.014 1.015 1.016 1.017 1.018 Infiltration 1.019	Node 31 32 33 34 62 36 37 38 39 40 41 42 43 44 45 46 47 48	(I/s) 0.9 4.6 0.0 6.3 7.7 14.4 19.8 22.3 24.6 24.6 48.3 56.9 64.2 59.9 5.4	(m/s) 0.2 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.1.1 0.8 0.8 0.8 0.8 0.8 0.9 0.9 0.9 0.0 0.3 0.9 0.3 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	s) 255 0. 244 0. 249 0. 241 0. 279 0. 279 0. 270 0. 271 0. 270 0. 271 0. 271 0. 271 0. 271 0. 272 0. 273 0. 274 0. 274 0. 274 0. 274 0.	Vol 009 0. 009 0. 045 0. 165 0. 050 0. 227 0. 240 1. 072 0. 100 0. 218 1. 279 1. 293 1. 104 1. 071 0. 261 1. 131 7. 292 2. 037 3.	(m³) Vol (m³) 1814 2323 1022 5526 0606 7301 1812 1029 6735 7192 5627 0327 1995 4921 2490 6223 3766 3820 3644 252.	
(Upstream Depth) 120 minute winter	Node 30 31 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 47 48	1.000 1.001 Infiltration 1.002 1.003 1.004 1.006 1.007 1.008 1.009 1.010 1.011 1.012 1.013 1.014 1.015 1.016 1.017 1.018 Infiltration 1.019	Node 31 32 33 34 62 36 37 38 39 40 41 42 43 44 45 46 47 48 1 49	(I/s) 0.9 4.6 0.0 6.3 7.7 14.4 19.8 22.3 24.6 24.6 28.3 30.8 46.6 48.3 56.9 60.9 5.4 24.6	(m/s 0.2 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.1.1 0.8 0.8 0.8 0.8 0.8 0.8 0.9 0.9 0.0 0.0 0.0 0.0 0.0 0.0	(a) 1255 O. 1255 O. 1255 O. 1255 O. 1256 O. 1257 O. 12	Vol 009 0. 045 0. 165 0. 050 0. 227 0. 240 1. 072 0. 100 0. 218 1. 279 1. 293 1. 104 1. 071 0. 261 1. 131 7. 292 2. 037 3. 112 0.	(m³) Vol (m³) 1814 2323 1022 5526 0606 7301 1812 1029 6735 7192 5627 0327 1995 4921 2490 6223 3766 3820 3644 252.	
(Upstream Depth) 120 minute winter	Node 30 31 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 47 48	1.000 1.001 Infiltration 1.002 1.003 1.004 1.006 1.007 1.008 1.009 1.010 1.011 1.012 1.013 1.014 1.015 1.016 1.017 1.018 Infiltration 1.019	Node 31 32 33 34 62 36 37 38 39 40 41 42 43 44 45 46 47 48	(I/s) 0.9 4.6 0.0 6.3 7.7 14.4 19.8 22.3 24.6 24.6 48.3 56.9 64.2 59.9 5.4	(m/s) 0.2 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.1.1 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	s) 255 0. 244 0. 249 0. 241 0. 279 0. 221 0. 276 0. 246 0. 287 0. 287 0. 290 0. 245 0. 245 0. 260 0. 261 0.	Vol 009 0. 045 0. 165 0. 050 0. 227 0. 240 1. 072 0. 100 0. 218 1. 279 1. 293 1. 104 1. 071 0. 261 1. 131 7. 292 2. 037 3. 112 0. 000 0.	(m³) Vol (m³) 1814 2323 1022 5526 0606 7301 1812 1029 6735 7192 5627 0327 1995 4921 2490 6223 3766 3820 3644 252.	

File: Broomfield Midleton-RFI.; Network: Storm Network 2 George Forde 26/02/2024 Page 12 Residential Development Broomfield, Midleton, Co. Cork

Results for 5 year +10% CC Critical Storm Duration. Lowest mass balance: 99.05%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
60 minute winter	51	60	57.360	0.018	4.4	0.0354	0.0000	OK
120 minute winter	52	92	49.832	0.036	14.5	0.0602	0.0000	OK
120 minute winter	53	92	44.768	0.094	14.5	0.1060	0.0000	OK
15 minute summer	54	1	54.636	0.000	0.0	0.0000	0.0000	OK
120 minute winter	55	92	54.036	0.031	3.7	0.0664	0.0000	OK
120 minute winter	56	92	52.444	0.043	6.5	0.0828	0.0000	OK
15 minute summer	58	1	39.041	0.000	0.0	0.0000	0.0000	OK
15 minute summer	60	1	32.727	0.000	0.0	0.0000	0.0000	OK
120 minute winter	62	92	52.927	0.047	14.4	0.0535	0.0000	OK
15 minute summer	59	1	34.189	0.000	0.0	0.0000	0.0000	OK
120 minute winter	65	96	48.175	0.006	3.5	1.1539	0.0000	OK
15 minute summer	63	1	48.938	0.000	0.0	0.0000	0.0000	OK
120 minute winter	64	90	48.683	0.048	3.0	0.0933	0.0000	OK
120 minute winter	66	90	45.785	0.048	3.6	0.1013	0.0000	OK
120 minute winter	67	94	44.132	0.017	5.7	1.8574	0.0000	OK

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
60 minute winter	51	6.001	52	4.4	1.436	0.007	0.0792	, ,
120 minute winter	52	5.003	53	14.5	1.303	0.030	0.3277	
120 minute winter	53	5.004	41	14.5	0.788	0.205	0.6886	
15 minute summer	54	5.000	55	0.0	0.000	0.000	0.0469	
120 minute winter	55	5.001	56	3.7	0.873	0.040	0.2225	
120 minute winter	56	5.002	52	6.5	1.234	0.079	0.3096	
15 minute summer	58	8.000	44	0.0	0.000	0.000	0.0001	
15 minute summer	60	10.000	46	0.0	0.000	0.000	0.0000	
120 minute winter	62	1.005	35	14.4	1.687	0.098	0.1475	
15 minute summer	59	9.000	45	0.0	0.000	0.000	0.0000	
120 minute winter	65	4.002	39	0.0	0.000	0.000	0.0018	
120 minute winter	65	Infiltration		3.5				
15 minute summer	63	4.000	64	0.0	0.000	0.000	0.0972	
120 minute winter	64	4.001	65	3.0	1.138	0.063	0.1747	
120 minute winter	66	7.000	67	3.6	1.648	0.357	0.1354	
120 minute winter	67	7.001	41	0.1	0.489	0.005	0.0014	
120 minute winter	67	Infiltration		5.5				

120 minute winter

15 minute summer

120 minute winter

15 minute summer

1.011

1.012

1.013

1.014

1.015

1.016

1.017

1.018

1.019

2.000

3.000

6.000

Infiltration

40

41

42

43

44

45

46

47

47

48

61

57

50

41

42

43

44

45

46

47

48

49

34

35

35.6

53.9

55.9

62.8

65.9

69.3

73.4

55.9

5.4

25.5

0.0

0.6

0.0

0.926

1.392

3.114

4.199

0.975

1.104

1.607

0.345

0.753

0.000

0.368

0.000

0.323

0.339

0.121

0.082

0.302

0.149

0.333

0.035

0.116

0.000

0.015

0.000

1.7375

1.1426

1.3336

0.5460

1.3878

7.6223

2.3766

3.3820

0.3739

0.0128

0.1125

0.0000

273.4

Brian O'Kennedy and Associate Shannon House Church Road Douglas, Cork File: Broomfield Midleton-RFI.; Network: Storm Network 2 George Forde 26/02/2024 Page 13 Residential Development Broomfield, Midleton, Co. Cork

Results for 10 year +10% CC Critical Storm Duration. Lowest mass balance: 99.05%

Node Event	US	Peak	Level	Donth	Inflow	Node	Flood	Status
Noue Event	Node		(m)	Depth (m)	(I/s)	Vol (m³)	(m³)	Status
60 minute winter	30	64	60.522	0.016	1.0	0.0198	0.0000	ОК
120 minute winter	31	94	58.924	0.010	5.2	0.0138	0.0000	OK
120 miliate winter	31	34	30.324	0.032	5.2	0.0055	0.0000	OK
120 minute winter	32	94	58.455	0.034	7.1	0.0459	0.0000	ОК
120 minute winter	33	94	57.431	0.073	8.8	0.0929	0.0000	OK
120 minute winter	34	90	56.757	0.036	16.7	0.0752	0.0000	OK
120 minute winter	35	90	51.594	0.079	23.0	0.1282	0.0000	OK
120 minute winter	36	92	49.716	0.118	25.9	0.1624	0.0000	OK
120 minute winter	37	92	49.144	0.060	28.5	0.0863	0.0000	OK
120 minute winter	38	92	48.190	0.069	28.5	0.0775	0.0000	OK
120 minute winter	39	92	46.067	0.103	32.8	0.1786	0.0000	OK
120 minute winter	40	92	44.806	0.150	35.7	0.2548	0.0000	OK
120 minute winter	41	92	43.340	0.173	53.9	0.2710	0.0000	OK
120 minute winter	42	92	43.187	0.092	55.9	0.1633	0.0000	OK
120 minute winter	43	92	39.239	0.074	62.8	0.2173	0.0000	OK
120 minute winter	44	92	33.897	0.200	65.9	0.4753	0.0000	OK
120 minute winter	45	114	31.357	0.848	70.7	1.7701	0.0000	SURCHARGED
120 minute winter	46	114	31.330	1.145	77.6	2.9689	0.0000	SURCHARGED
120 minute winter	47	114	31.314	1.152	73.4	118.4326	0.0000	SURCHARGED
120 minute winter	48	114	31.300	2.843	57.2	7.6932	21.9548	FLOOD
120 minute winter	49	114	28.537	0.103	25.5	0.0000	0.0000	OK
15 minute summer	61	1	56.824	0.000	0.0	0.0000	0.0000	OK
120 minute winter	57	102	53.227	0.019	0.6	0.0231	0.0000	OK
15 minute summer	50	1	59.127	0.000	0.0	0.0000	0.0000	OK
							•=	
Link Event	US	Link	DS	Outflow			•	nk Discharge
(Upstream Depth)	Node	4 000	Node	(I/s)	(m,	-		(m³) Vol (m³)
60 minute winter	30	1.000	31	1.0				2000
120 minute winter	31	1.001	32	5.2		981 C	0.103 0.2	2548
120 minute winter	31	Infiltratio		0.0				1406
120 minute winter	32	1.002	33	7.1				1126
120 minute winter	33	1.003	34	8.8				5110
120 minute winter	34	1.004	62	16.7				0671
120 minute winter	35	1.006	36	23.0				3119
120 minute winter	36	1.007	37	25.9				3137
120 minute winter	37	1.008	38	28.5				1144
120 minute winter	38	1.009	39	28.5				7482
120 minute winter	39	1.010	40	32.8	₹ 1	544 C).252 1.9	9107

Brian O'Kennedy and Associate | File: Broomfield Midleton-RFI. Shannon House Church Road Douglas, Cork

Network: Storm Network 2 George Forde 26/02/2024

Page 14 Residential Development Broomfield, Midleton, Co. Cork

Results for 10 year +10% CC Critical Storm Duration. Lowest mass balance: 99.05%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
60 minute winter	51	60	57.361	0.019	5.1	0.0380	0.0000	OK
120 minute winter	52	94	49.835	0.038	16.8	0.0646	0.0000	OK
120 minute winter	53	94	44.776	0.101	16.8	0.1147	0.0000	OK
15 minute summer	54	1	54.636	0.000	0.0	0.0000	0.0000	OK
60 minute winter	55	63	54.038	0.033	4.2	0.0705	0.0000	OK
120 minute winter	56	94	52.447	0.046	7.5	0.0889	0.0000	OK
15 minute summer	58	1	39.041	0.000	0.0	0.0000	0.0000	OK
15 minute summer	60	1	32.727	0.000	0.0	0.0000	0.0000	OK
120 minute winter	62	90	52.931	0.051	16.7	0.0575	0.0000	OK
15 minute summer	59	1	34.189	0.000	0.0	0.0000	0.0000	OK
120 minute winter	65	98	48.176	0.007	4.0	1.3279	0.0000	OK
15 minute summer	63	1	48.938	0.000	0.0	0.0000	0.0000	OK
120 minute winter	64	84	48.685	0.050	3.4	0.0988	0.0000	OK
120 minute winter	66	86	45.789	0.052	4.1	0.1086	0.0000	OK
120 minute winter	67	96	44.135	0.019	6.5	2.1390	0.0000	OK

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
				• • •				voi (iii)
60 minute winter	51	6.001	52	5.1	1.494	0.008	0.0880	
120 minute winter	52	5.003	53	16.8	1.355	0.035	0.3650	
120 minute winter	53	5.004	41	16.8	0.821	0.237	0.7661	
15 minute summer	54	5.000	55	0.0	0.000	0.000	0.0520	
60 minute winter	55	5.001	56	4.2	0.906	0.046	0.2450	
120 minute winter	56	5.002	52	7.5	1.287	0.092	0.3426	
15 minute summer	58	8.000	44	0.0	0.000	0.000	0.0001	
15 minute summer	60	10.000	46	0.0	0.000	0.000	0.0000	
120 minute winter	62	1.005	35	16.7	1.754	0.113	0.1639	
15 minute summer	59	9.000	45	0.0	0.000	0.000	0.0000	
120 minute winter	65	4.002	39	0.0	0.000	0.000	0.0021	
120 minute winter	65	Infiltration		4.0				
15 minute summer	63	4.000	64	0.0	0.000	0.000	0.1091	
120 minute winter	64	4.001	65	3.4	1.174	0.071	0.1904	
120 minute winter	66	7.000	67	4.1	1.678	0.407	0.1509	
120 minute winter	67	7.001	41	0.1	0.533	0.006	0.0017	
120 minute winter	67	Infiltration		6.3				

Brian O'Kennedy and Associate File: Broomfield Midleton-RFI.; Shannon House Church Road Douglas, Cork

Network: Storm Network 2 George Forde 26/02/2024

Page 15 **Residential Development** Broomfield, Midleton, Co. Cork

Results for 30 year +10% CC Critical Storm Duration. Lowest mass balance: 99.05%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
60 minute winter	30	56	60.524	0.018	1.2	0.0215	0.0000	OK
120 minute winter	31	92	58.930	0.058	6.5	0.0961	0.0000	OK
120 minute winter	32	94	58.459	0.038	8.9	0.0512	0.0000	OK
120 minute winter	33	94	57.440	0.082	11.0	0.1044	0.0000	OK
60 minute winter	34	61	56.761	0.040	20.9	0.0840	0.0000	OK
60 minute winter	35	61	51.605	0.090	28.9	0.1453	0.0000	OK
60 minute winter	36	61	49.732	0.133	32.5	0.1837	0.0000	OK
60 minute winter	37	62	49.151	0.068	35.8	0.0975	0.0000	OK
60 minute winter	38	62	48.198	0.077	35.8	0.0869	0.0000	OK
60 minute winter	39	62	46.081	0.117	41.2	0.2021	0.0000	OK
60 minute winter	40	63	44.827	0.170	44.7	0.2897	0.0000	OK
60 minute winter	41	63	43.361	0.194	67.7	0.3039	0.0000	OK
60 minute winter	42	63	43.199	0.103	70.2	0.1833	0.0000	OK
60 minute winter	43	63	39.248	0.083	78.8	0.2441	0.0000	OK
120 minute winter	44	92	33.923	0.226	82.7	0.5367	0.0000	OK
120 minute winter	45	98	31.385	0.876	88.7	1.8283	0.0000	SURCHARGED
120 minute winter	46	104	31.361	1.176	103.0	3.0474	0.0000	SURCHARGED
60 minute winter	47	76	31.336	1.174	108.1	118.4876	0.0000	SURCHARGED
180 minute winter	48	128	31.300	2.843	84.7	7.6932	103.1870	FLOOD
60 minute winter	49	71	28.537	0.103	25.5	0.0000	0.0000	OK
15 minute summer	61	1	56.824	0.000	0.0	0.0000	0.0000	OK
120 minute winter	57	94	53.230	0.022	8.0	0.0264	0.0000	OK
15 minute summer	50	1	59.127	0.000	0.0	0.0000	0.0000	OK

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
60 minute winter	30	1.000	31	1.2	0.281	0.013	0.2332	
120 minute winter	31	1.001	32	6.5	1.046	0.128	0.2989	
120 minute winter	31	Infiltration		0.0				
120 minute winter	32	1.002	33	8.9	1.043	0.064	0.1321	
120 minute winter	33	1.003	34	11.0	1.262	0.238	0.7164	
60 minute winter	34	1.004	62	20.9	3.324	0.072	0.0787	
60 minute winter	35	1.006	36	28.9	1.970	0.330	0.9600	
60 minute winter	36	1.007	37	32.5	1.565	0.350	1.5515	
60 minute winter	37	1.008	38	35.8	2.734	0.105	0.1353	
60 minute winter	38	1.009	39	35.8	1.821	0.146	0.8829	
60 minute winter	39	1.010	40	41.1	1.642	0.316	2.2555	
60 minute winter	40	1.011	41	44.7	0.986	0.405	2.0484	
60 minute winter	41	1.012	42	67.8	1.491	0.426	1.3362	
60 minute winter	42	1.013	43	70.1	3.312	0.152	1.5719	
60 minute winter	43	1.014	44	78.8	4.478	0.103	0.6427	
120 minute winter	44	1.015	45	82.7	1.041	0.379	1.6317	
120 minute winter	45	1.016	46	92.7	1.124	0.200	7.6223	
120 minute winter	46	1.017	47	96.8	1.629	0.439	2.3766	
60 minute winter	47	1.018	48	106.0	0.491	0.066	3.3820	
60 minute winter	47	Infiltration		5.4				
180 minute winter	48	1.019	49	25.5	0.753	0.116	0.3739	337.2
15 minute summer	61	2.000	34	0.0	0.000	0.000	0.0151	
120 minute winter	57	3.000	35	0.8	0.401	0.020	0.1375	
15 minute summer	50	6.000	51	0.0	0.000	0.000	0.0000	

Shannon House Church Road Douglas, Cork

Brian O'Kennedy and Associate | File: Broomfield Midleton-RFI.; Network: Storm Network 2 George Forde 26/02/2024

Page 16 Residential Development Broomfield, Midleton, Co. Cork

Results for 30 year +10% CC Critical Storm Duration. Lowest mass balance: 99.05%

	Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
		Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
60) minute winter	51	58	57.363	0.021	6.4	0.0421	0.0000	OK
12	20 minute winter	52	90	49.839	0.043	21.1	0.0720	0.0000	OK
12	20 minute winter	53	92	44.789	0.115	21.1	0.1299	0.0000	OK
15	minute summer	54	1	54.636	0.000	0.0	0.0000	0.0000	OK
12	20 minute winter	55	92	54.042	0.037	5.3	0.0789	0.0000	OK
12	20 minute winter	56	94	52.453	0.052	9.4	0.0996	0.0000	OK
15	minute summer	58	1	39.041	0.000	0.0	0.0000	0.0000	OK
15	5 minute summer	60	1	32.727	0.000	0.0	0.0000	0.0000	OK
60) minute winter	62	61	52.937	0.057	20.9	0.0644	0.0000	OK
15	5 minute summer	59	1	34.189	0.000	0.0	0.0000	0.0000	OK
12	20 minute winter	65	104	48.178	0.009	5.1	1.6884	0.0000	OK
15	5 minute summer	63	1	48.938	0.000	0.0	0.0000	0.0000	OK
12	20 minute winter	64	86	48.691	0.056	4.3	0.1099	0.0000	OK
60) minute winter	66	59	45.796	0.059	5.2	0.1237	0.0000	OK
12	20 minute winter	67	94	44.140	0.024	8.2	2.6798	0.0000	OK

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
60 minute winter	51	6.001	52	6.4	1.604	0.010	0.1032	
120 minute winter	52	5.003	53	21.1	1.435	0.044	0.4315	
120 minute winter	53	5.004	41	21.1	0.873	0.298	0.9041	
15 minute summer	54	5.000	55	0.0	0.000	0.000	0.0615	
120 minute winter	55	5.001	56	5.3	0.965	0.058	0.2883	
120 minute winter	56	5.002	52	9.4	1.374	0.115	0.4024	
15 minute summer	58	8.000	44	0.0	0.000	0.000	0.0001	
15 minute summer	60	10.000	46	0.0	0.000	0.000	0.0000	
60 minute winter	62	1.005	35	20.9	1.860	0.141	0.1935	
15 minute summer	59	9.000	45	0.0	0.000	0.000	0.0000	
120 minute winter	65	4.002	39	0.0	0.000	0.000	0.0026	
120 minute winter	65	Infiltration		5.0				
15 minute summer	63	4.000	64	0.0	0.000	0.000	0.1267	
120 minute winter	64	4.001	65	4.3	1.240	0.090	0.2239	
60 minute winter	66	7.000	67	5.2	1.745	0.516	0.1833	
120 minute winter	67	7.001	41	0.1	0.605	0.009	0.0022	
120 minute winter	67	Infiltration		7.9				

Shannon House Church Road Douglas, Cork

Brian O'Kennedy and Associate File: Broomfield Midleton-RFI.; Network: Storm Network 2 George Forde 26/02/2024

Page 17 Residential Development Broomfield, Midleton, Co. Cork

Results for 100 year +20% CC Critical Storm Duration. Lowest mass balance: 99.05%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
60 minute winter	30	57	60.527	0.021	1.7	0.0253	0.0000	OK
60 minute winter	31	67	58.941	0.069	9.2	0.1143	0.0000	OK
60 minute winter	32	67	58.466	0.045	12.5	0.0604	0.0000	OK
60 minute winter	33	67	57.456	0.099	15.4	0.1253	0.0000	OK
60 minute winter	34	67	56.769	0.047	29.3	0.0990	0.0000	OK
60 minute winter	35	67	51.623	0.109	40.4	0.1758	0.0000	OK
60 minute winter	36	67	49.759	0.161	45.4	0.2219	0.0000	OK
60 minute winter	37	67	49.165	0.082	49.9	0.1170	0.0000	OK
60 minute winter	38	68	48.212	0.091	49.8	0.1029	0.0000	OK
60 minute winter	39	68	46.105	0.141	57.4	0.2435	0.0000	OK
60 minute winter	40	69	44.863	0.207	62.2	0.3518	0.0000	OK
60 minute winter	41	68	43.397	0.230	94.1	0.3603	0.0000	OK
60 minute winter	42	69	43.219	0.123	97.5	0.2194	0.0000	OK
60 minute winter	43	67	39.260	0.094	109.6	0.2784	0.0000	OK
60 minute winter	44	67	33.967	0.270	114.9	0.6423	0.0000	OK
60 minute winter	45	58	31.424	0.915	123.0	1.9102	0.0000	SURCHARGED
60 minute winter	46	67	31.403	1.218	156.8	3.1581	0.0000	SURCHARGED
60 minute winter	47	59	31.358	1.196	149.3	118.5434	0.0000	SURCHARGED
180 minute winter	48	112	31.300	2.843	126.2	7.6932	281.1078	FLOOD
60 minute summer	49	66	28.537	0.103	25.5	0.0000	0.0000	OK
15 minute summer	61	1	56.824	0.000	0.0	0.0000	0.0000	OK
60 minute winter	57	67	53.233	0.025	1.1	0.0303	0.0000	OK
15 minute summer	50	1	59.127	0.000	0.0	0.0000	0.0000	OK

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
60 minute winter	30	1.000	31	1.7	0.308	0.018	0.2973	
60 minute winter	31	1.001	32	9.1	1.151	0.180	0.3806	
60 minute winter	31	Infiltration		0.0				
60 minute winter	32	1.002	33	12.5	1.144	0.090	0.1683	
60 minute winter	33	1.003	34	15.4	1.386	0.332	0.9124	
60 minute winter	34	1.004	62	29.3	3.663	0.100	0.0999	
60 minute winter	35	1.006	36	40.3	2.145	0.460	1.2296	
60 minute winter	36	1.007	37	45.3	1.697	0.487	1.9853	
60 minute winter	37	1.008	38	49.8	2.976	0.146	0.1730	
60 minute winter	38	1.009	39	49.8	1.984	0.203	1.1252	
60 minute winter	39	1.010	40	57.1	1.788	0.439	2.8778	
60 minute winter	40	1.011	41	62.0	1.078	0.561	2.5956	
60 minute winter	41	1.012	42	94.1	1.636	0.591	1.6822	
60 minute winter	42	1.013	43	97.4	3.688	0.210	1.9651	
60 minute winter	43	1.014	44	109.5	4.547	0.143	0.9496	
60 minute winter	44	1.015	45	114.6	1.146	0.526	2.0537	
60 minute winter	45	1.016	46	142.7	1.224	0.307	7.6223	
60 minute winter	46	1.017	47	149.3	1.815	0.678	2.3766	
60 minute winter	47	1.018	48	141.7	0.656	0.088	3.3820	
60 minute winter	47	Infiltration		5.4				
180 minute winter	48	1.019	49	25.5	0.753	0.116	0.3739	362.6
15 minute summer	61	2.000	34	0.0	0.000	0.000	0.0192	
60 minute winter	57	3.000	35	1.1	0.437	0.027	0.1683	
15 minute summer	50	6.000	51	0.0	0.000	0.000	0.0000	

Brian O'Kennedy and Associate | File: Broomfield Midleton-RFI. Shannon House Church Road

Network: Storm Network 2 George Forde 26/02/2024

Page 18 Residential Development Broomfield, Midleton, Co. Cork

Results for 100 year +20% CC Critical Storm Duration. Lowest mass balance: 99.05%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
60 minute winter	51	67	57.367	0.025	9.0	0.0493	0.0000	OK
60 minute winter	52	67	49.847	0.050	29.7	0.0848	0.0000	OK
60 minute winter	53	67	44.814	0.139	29.6	0.1574	0.0000	OK
15 minute summer	54	1	54.636	0.000	0.0	0.0000	0.0000	OK
60 minute winter	55	67	54.048	0.043	7.5	0.0934	0.0000	OK
60 minute winter	56	67	52.463	0.062	13.3	0.1186	0.0000	OK
15 minute summer	58	1	39.041	0.000	0.0	0.0000	0.0000	OK
15 minute summer	60	1	32.727	0.000	0.0	0.0000	0.0000	OK
60 minute winter	62	67	52.947	0.068	29.3	0.0764	0.0000	OK
15 minute summer	59	1	34.189	0.000	0.0	0.0000	0.0000	OK
60 minute winter	65	79	48.181	0.012	7.2	2.2876	0.0000	OK
15 minute summer	63	1	48.938	0.000	0.0	0.0000	0.0000	OK
60 minute winter	64	67	48.701	0.066	6.1	0.1288	0.0000	OK
60 minute winter	66	67	45.810	0.073	7.3	0.1530	0.0000	OK
60 minute winter	67	75	44.148	0.032	11.5	3.6215	0.0000	OK

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
60 minute winter	51	6.001	52	9.0	1.772	0.015	0.1309	
60 minute winter	52	5.003	53	29.6	1.556	0.062	0.5546	
60 minute winter	53	5.004	41	29.5	0.957	0.417	1.1546	
15 minute summer	54	5.000	55	0.0	0.000	0.000	0.0774	
60 minute winter	55	5.001	56	7.5	1.066	0.082	0.3685	
60 minute winter	56	5.002	52	13.2	1.514	0.162	0.5142	
15 minute summer	58	8.000	44	0.0	0.000	0.000	0.0001	
15 minute summer	60	10.000	46	0.0	0.000	0.000	0.0000	
60 minute winter	62	1.005	35	29.2	2.026	0.198	0.2476	
15 minute summer	59	9.000	45	0.0	0.000	0.000	1.3752	
60 minute winter	65	4.002	39	0.0	0.214	0.001	0.0036	
60 minute winter	65	Infiltration		6.8				
15 minute summer	63	4.000	64	0.0	0.000	0.000	0.1617	
60 minute winter	64	4.001	65	6.1	1.342	0.127	0.2853	
60 minute winter	66	7.000	67	7.3	1.805	0.723	0.2452	
60 minute winter	67	7.001	41	0.2	0.721	0.016	0.0033	
60 minute winter	67	Infiltration		10.7				

Surface Water Receiving Network -Munster Drain Survey Manhole Schedule

Tel. 021 - 4770797 info@munsterdrain.com

Wrc

Project

Project Name: Broomfield Court, Midleton

Project Description: Surface Water CCTV Survey

Project Number: KM.04.19.67

Project Date: 05/04/2019

Project Standard: MSCC4 Sewers & Drainage GB (SRM4 Scoring)

Tel. 021 - 4770797 info@munsterdrain.com

Table of Contents

Project Name Broomfield Court, Midleton	Project Number KM.04.19.67	Project Date 05/04/2019

Project Information	P-1
Scoring Summary	P-2
Section Profile	P-3
Section Summary	P-4
Section: 2; S1 > S2 (S1X)	1
Section: 3; S2 > S3 (S2X)	3
Section: 5; S3 > S4 (S3X)	5
Section: 4; S4 > S5 (S4X)	7
Section: 6; S5 > S6 (S5X)	12
Section: 8; S5 > S6 (S5X)	15
Section: 7; S6 > S7 (S6X)	18
Section: 9; S7 > S8 (S7X)	23
Section: 10; S8 > S9 (S8X)	26
Section: 11; S8 > S9 (S8X)	28
Section: 12; S9 > S10 (S9X)	30
Section: 13; S10 > S11 (S10X)	32
Section: 1; S11 > S12 (S11X)	34
Section: 14; S12 > S13 (S12X)	37
WinCan	39
	Manager 1 (1)

Tel. 021 - 4770797 info@munsterdrain.com

Project Information

Project Name Broomfield Court, Midleton Project Number KM.04.19.67

Project Date 05/04/2019

Client

Company:

M.H.L Consulting Engineers

Contact:

Shane Moriarty

Contractor

Company:

Munster Drain Services

Contact:

Office

Phone:

021 - 4770797

Email:

info@munsterdrain.com

Tel. 021 - 4770797 info@munsterdrain.com

Scoring Summary

Project Name Project Number Project Date Broomfield Court, Midleton KM.04.19.67 05/04/2019

Structural Defects

Grade 3: Best practice suggests consideration should be given to repairs in the medium term.

Grade 4: Best practice suggests consideration should be given to repairs to avoid a potential collapse.

Grade 5: Best practice suggests that this pipe is at risk of collapse at any time. Urgent

consideration should be given to repairs to avoid total failure.

Section	PLR	Grade	Description
9	S7X	4	Fracture spiral from 9 o'clock to 3 o'clock

Service / Operational Condition

Grade 3: Best practice suggests consideration should be given to maintenance activities in the medium term.

Grade 4: Best practice suggests consideration should be given to maintenance activity to avoid potential blockages.

Grade 5: Best practice suggests that this pipe is at a high risk of backing up or causing flooding.

Section	PLR	Grade	Description
6	S5X	5	Connection intruding at 1 o'clock, diameter: 100mm, intrusion: 95%
7	S6X		Connection intruding at 12 o'clock, diameter: 100mm, intrusion: 80%
8	S5X		Connection intruding at 11 o'clock, diameter: 100mm, intrusion: 95%

Abandoned Surveys

Section	PLR	Description
6	S5X	Survey abandoned
8	S5X	Survey abandoned
10	S8X	Survey abandoned
11	S8X	Survey abandoned

Information

These scoring summaries are based on the SRM grading from the WRc.

Tel. 021 - 4770797 info@munsterdrain.com

Section Profile

Project NameProject NumberProject DateBroomfield Court, MidletonKM.04.19.6705/04/2019

Circular, 450 mm										
Section	Upstream Node	Downstream Node	Date	Road	Pipe Material	Total Length	Inspected Length			
2	S1	S2	05/04/2019	Broomfield	Polyvinyl chloride	13.36 m	13.36 m			
3	S2	S3	05/04/2019	Avoncore Place	Polyvinyl chloride	34.89 m	34.89 m			
4	S4	S5	05/04/2019	Brookdale	Concrete	65.17 m	65.17 m			
5	S3	S4	05/04/2019	Brookdale	Polyvinyl chloride	14.68 m	14.68 m			

Total: 4 Inspections x Circular 450 mm = 128.10 m Total Length and 128.10 m Inspected Length

Circular, 600 mm

Section	Upstream Node	Downstream Node	Date	Road	Pipe Material	Total Length	Inspected Length
1	S11	S12	05/04/2019	R626	Concrete	55.46 m	55.46 m
7	S6	S7	05/04/2019	Brookdale	Concrete	61.18 m	61.18 m
9	S7	S8	05/04/2019	Avoncore Estate	Concrete	31.38 m	31.38 m
12	S9	S10	05/04/2019	Elm Grove	Concrete	9.92 m	9.92 m
13	S10	S11	05/04/2019	Avoncore Estate	Concrete	67.57 m	67.57 m
14	S12	S13	05/04/2019	R626	Concrete	68.87 m	68.87 m

Total: 6 Inspections x Circular 600 mm = 294.38 m Total Length and 294.38 m Inspected Length

Total: 10 Inspections = 422.48 m Total Length and 422.48 m Inspected Length

Broomfield Court, Midleton P-3

Tel. 021 - 4770797 info@munsterdrain.com

Section Summary

Project Name Broomfield Court, Midleton	Project Number KM.04.19.67	Project Date 05/04/2019
---	-------------------------------	----------------------------

Nu	mber of	f sectio	ns		14		
Tot	tal lengt	th of se	wer network		588.62 m		
					588.62 m		
To	tal lengi	th of in	spections		300.02 III		
To	tal lengt	th of ak	pandoned inspections		0.00 m		
To	tal abar	ndoned	inspections		4		
Nu	mber o	f section	n inspection photos		96		
Nu	ımber o	f section	n inspection videos		14		
			on inspection scans		0		
			on inclination measurements		0		
Inspec	ction Direct cted Length		S1X Upstream 13.36 m 13.36 m	Upstream Node: Downstream Node: Dia/Height: Pipe Material:	S1 S2 450 mm Polyvinyl chloride		
No.	m+	Code	Observation				
1	0.00	МН	Start node type, manhole, reference num	nber: S2			
				mber: S1			
2	13.36						
PLR: nspec	tion Directed Length		S2X Downstream 34.89 m 34.89 m	Upstream Node: Downstream Node: Dia/Height: Pipe Material:	S2 S3 450 mm Polyvinyl chloride		
PLR: nspec	ction Direct		Downstream 34.89 m	Downstream Node: Dia/Height:	S3 450 mm		
PLR: nspec nspec Total I	ction Directed Lengtl Length:	h:	Downstream 34.89 m 34.89 m	Downstream Node: Dia/Height: Pipe Material:	S3 450 mm		
PLR: nspec nspec Total I No.	ction Direct cted Lengtl Length: m+	h: Code	Downstream 34.89 m 34.89 m Observation	Downstream Node: Dia/Height: Pipe Material: nber: S2	S3 450 mm		
PLR: Inspec Inspec Total I No.	ction Direction	Code	Downstream 34.89 m 34.89 m Observation Start node type, manhole, reference num	Downstream Node: Dia/Height: Pipe Material:	S3 450 mm		
PLR: Inspectinspections of the second	ction Direct cted Length: m+ 0.00 14.35	Code MH WL MHF	Downstream 34.89 m 34.89 m Observation Start node type, manhole, reference num Water level, 5% of the vertical dimension	Downstream Node: Dia/Height: Pipe Material:	S3 450 mm		
PLR: Inspectinspections of the second	ction Direction Direction Direction Direction Direction Direction Length	Code MH WL MHF	Downstream 34.89 m 34.89 m Observation Start node type, manhole, reference num Water level, 5% of the vertical dimension Finish node type, manhole, reference num S3X Upstream 14.68 m	Downstream Node: Dia/Height: Pipe Material: mber: S2 mber: S3 Upstream Node: Downstream Node: Dia/Height:	S3 450 mm Polyvinyl chloride S3 S4 450 mm		
PLR: Inspecting No. 1 2 3 PLR: Inspecting PLR	ction Directed Length: m+ 0.00 14.35 34.89 ction Directed Length	Code MH WL MHF	Downstream 34.89 m 34.89 m Observation Start node type, manhole, reference nun Water level, 5% of the vertical dimension Finish node type, manhole, reference nu S3X Upstream 14.68 m 14.68 m	Downstream Node: Dia/Height: Pipe Material: mber: S2 mber: S3 Upstream Node: Downstream Node: Dia/Height: Pipe Material:	S3 450 mm Polyvinyl chloride S3 S4 450 mm		
PLR: Inspectinsp	ction Directed Length: m+ 0.00 14.35 34.89 ction Directed Length Length: m+	Code MH WL MHF tion: h:	Downstream 34.89 m 34.89 m Observation Start node type, manhole, reference num Water level, 5% of the vertical dimension Finish node type, manhole, reference num S3X Upstream 14.68 m 14.68 m Observation	Downstream Node: Dia/Height: Pipe Material: mber: S2 mber: S3 Upstream Node: Downstream Node: Dia/Height: Pipe Material:	S3 450 mm Polyvinyl chloride S3 S4 450 mm		
PLR: Inspectinsp	ction Directed Length: m+ 0.00 14.35 34.89 ction Directed Length Length: m+ 0.00	Code MH WL MHF Stion: h: Code MH	Downstream 34.89 m 34.89 m Observation Start node type, manhole, reference num Water level, 5% of the vertical dimension Finish node type, manhole, reference num S3X Upstream 14.68 m 14.68 m Observation Start node type, manhole, reference num	Downstream Node: Dia/Height: Pipe Material: mber: S2 mber: S3 Upstream Node: Downstream Node: Dia/Height: Pipe Material:	S3 450 mm Polyvinyl chloride S3 S4 450 mm		

Tel. 021 - 4770797 info@munsterdrain.com

Section Summary

Project NameProject NumberProject DateBroomfield Court, MidletonKM.04.19.6705/04/2019

PLR:			S4X	Upstream Node:	S4					
Inspection Direction:			Upstream	Downstream Node:	S5					
	ected Leng	th:	65.17 m	Dia/Height:	450 mm					
Total	Length:		65.17 m	Pipe Material:	Concrete					
No.	m+	Code	Observation	Observation						
1	0.00	МН	Start node type, manhole, refe	erence number: S5						
2	0.59	CN	Connection other than junctio	n at 12 o'clock, diameter: 100mm						
3	4.16	CN	Connection other than junctio	n at 12 o'clock, diameter: 150mm						
4	8.54	CN	Connection other than junction	n at 12 o'clock, diameter: 100mm						
5	16.53	CN	Connection other than junction	n at 12 o'clock, diameter: 100mm						
6	22.05	CN	Connection other than junction	n at 12 o'clock, diameter: 150mm						
7	24.68	CN	Connection other than junction	n at 12 o'clock, diameter: 100mm						
8	32.38	CN	Connection other than junction	n at 12 o'clock, diameter: 100mm						
9	36.31	CN	Connection other than junction	n at 12 o'clock, diameter: 150mm						
10	38.59	CN	Connection other than junction	n at 12 o'clock, diameter: 100mm						
11	46.36	CN	Connection other than junction	n at 12 o'clock, diameter: 100mm						
12	49.34	CN	Connection other than junction	n at 12 o'clock, diameter: 100mm						
13	58.93	CN	Connection other than junction	n at 12 o'clock, diameter: 100mm						
14	61.19	CN	Connection other than junction	n at 12 o'clock, diameter: 150mm						
15	64.09	CN		n at 12 o'clock, diameter: 100mm		30				
16	65.17	MHF	Finish node type, manhole, re-	ference number: S4		30				
nspe	ction Direc cted Lengt Length:		Downstream 51.90 m 51.90 m	Downstream Node: Dia/Height: Pipe Material:	\$6 450 mm					
No.	m+	Code	Observation	i ipe material.	Concrete					
1	0.00	МН	Start node type, manhole, refe	erence number: \$5						
2	4.83	CN		n at 12 o'clock, diameter: 100mm						
3	17.03	CN		n at 12 o'clock, diameter: 100mm						
4	21.52	CN		at 12 o'clock, diameter: 100mm		19				
5	27.37	CN		at 12 o'clock, diameter: 100mm		-				
6	34.29	CN		at 12 o'clock, diameter: 100mm						
7	36.11	CN		at 12 o'clock, diameter: 100mm						
8	41.03	CN		at 12 o'clock, diameter: 100mm						
9	49.28	CN		at 11 o'clock, diameter: 100mm						
10	51.22	CXI		ck, diameter: 100mm, intrusion: 95%						
11	51.90	SA	Survey abandoned	, and the second						
LR:			OFY							
	tion Direct	ion:	S5X Upstream	Upstream Node:	S5					
	ted Length		14.70 m	Downstream Node: Dia/Height:	S6 450 mm					
nspec	ength:		14.70 m	Pipe Material:	Concrete					
SECTION AND			r po material.							
March Company	m+	Code	Observation							

Tel. 021 - 4770797 info@munsterdrain.com

Section Summary

Project NameProject NumberProject DateBroomfield Court, MidletonKM.04.19.6705/04/2019

No.	m+	Code	Observation							
2	0.42	CN	Connection other than junc	tion at 2 o'clock, diameter: 100mm						
3	0.84	CXI	Connection intruding at 2 o'clock, diameter: 100mm, intrusion: 20%							
4	1.73	CXI	Connection intruding at 12 o'clock, diameter: 100mm, intrusion: 25%							
5	4.75	CN		tion at 1 o'clock, diameter: 100mm	70					
6	8.40	CN		tion at 2 o'clock, diameter: 100mm						
7	14.23	CXI		o'clock, diameter: 100mm, intrusion: 95	%					
8	14.70	SA	Survey abandoned	W. 15 (Sec. 1997)						
PLR:			S6X							
	ction Direc	tion:	Downstream	Upstream Node: Downstream Node:	\$6 \$7					
	cted Lengt		61.18 m	Dia/Height:	S7 600 mm					
Total I	Length:		61.18 m	Pipe Material:	Concrete					
No.	m+	Code	Observation							
1	0.00	МН	Start node type, manhole, re	eference number: S6						
2	4.14	CN	Connection other than junct	ion at 12 o'clock, diameter: 100mm						
3	4.39	CN	The state of the s	ion at 12 o'clock, diameter: 100mm						
4	14.22	CN		ion at 12 o'clock, diameter: 100mm						
5	14.77	CN		ion at 12 o'clock, diameter: 100mm						
6	18.16	CN		ion at 11 o'clock, diameter: 100mm						
7	18.17	CN		ion at 12 o'clock, diameter: 100mm						
8	27.51	CN		ion at 12 o'clock, diameter: 100mm						
9	27.62	CN		ion at 12 o'clock, diameter: 100mm						
10	32.56	CN		ion at 12 o'clock, diameter: 100mm						
11	34.61	CN		on at 12 o'clock, diameter: 100mm						
12	41.57	CN		on at 12 o'clock, diameter: 100mm						
13	42.14	CN		on at 12 o'clock, diameter: 100mm						
14	48.17	CXI		clock, diameter: 100mm, intrusion: 209	/					
15	52.98	CXI		clock, diameter: 100mm, intrusion: 809						
16	53.79	CXI		'clock, diameter: 100mm, intrusion: 50%						
17	58.07	CN		on at 12 o'clock, diameter: 100mm	0					
18	61.18	MHF	Finish node type, manhole, r							
			r mon node type, marmole, i	elefence number. 37						
spect	tion Direct ted Length ength:		S7X Downstream 31.38 m 31.38 m	Upstream Node: Downstream Node: Dia/Height: Pipe Material:	S7 S8 600 mm Concrete					
No.	m+	Code	Observation	- F- Material	Concrete					
1	0.00	МН	Start node type, manhole, re	ference number: S7						
2	0.00	GP	General photograph taken at							
3	0.00	СМ	Cracks, multiple from 4 o'clor	The state of the s						
4	0.00	FS	Fracture spiral from 9 o'clock	AND THE RESIDENCE OF THE PARTY						
5	0.07	GP	General photograph taken at							
6	0.07	SRB	Sealing ring broken from 3 o'							
7	0.37	CS	Cracks, spiral from 12 o'clock	The second secon						

Tel. 021 - 4770797 info@munsterdrain.com

Section Summary

Project NameProject NumberProject DateBroomfield Court, MidletonKM.04.19.6705/04/2019

No.	m+	Code	Observation						
8	1.34	CN	Connection other than junction at 12						
9	3.48	GP	General photograph taken at this point						
10	5.72	CN	Connection other than junction at 1 o'clock, diameter: 100mm						
11	21.87	CN	Connection other than junction at 12 o'clock, diameter: 100mm						
12 31.38 MHF Finish node type, manhole, reference number: S8									
PLR:			S8X	Upstream Node:	S8				
The state of the s	ction Direc		Downstream	Downstream Node:	\$9				
	cted Leng	th:	78.81 m	Dia/Height:	600 mm				
	Length:		78.81 m	Pipe Material:	Concrete				
No.	m+	Code	Observation						
1	0.00	МН	Start node type, manhole, reference	number: S8					
2	78.81	SA	Survey abandoned						
PLR:			S8X	Upstream Node:	S8				
	tion Direc		Upstream	Downstream Node:	S9				
CHILD THAT COLD	ted Lengt	h:	20.73 m	Dia/Height:	600 mm				
Total L	ength:		20.73 m	Pipe Material:	Concrete				
No.	m+	Code	Observation						
1	0.00	МН	Start node type, manhole, reference	number: S9					
2	20.73	SA	Survey abandoned						
PLR:			S9X	Upstream Node:	S9				
Inspec	tion Direc	tion:	Downstream	Downstream Node:	S10				
Inspec	ted Lengt	h:	9.92 m	Dia/Height:	600 mm				
Total L	ength:		9.92 m	Pipe Material:	Concrete				
No.	m+	Code	Observation						
1	0.00	МН	Start node type, manhole, reference r	number: S9					
2	9.92	MHF	Finish node type, manhole, reference	number: S10					
PLR:			S10X	Upstream Node:	S10				
nspec	tion Direct	ion:	Downstream	Downstream Node:	S10				
nspec	ted Length	1:	67.57 m	Dia/Height:	600 mm				
Total L	ength:		67.57 m	Pipe Material:	Concrete				
No.	m+	Code	Observation						
1	0.00	МН	Start node type, manhole, reference n	umber: S10					
2	61.26	WL	Water level, 10% of the vertical dimen						
3	67.57	MHF	Finish node type, manhole, reference	number: S11					
PLR:			S11X	Upstream Node:	S11				
nspect	ion Direct	ion:	Downstream	Downstream Node:	S12				
	ed Length		55.46 m	Dia/Height:	600 mm				
otal Le	ength:		55.46 m	Pipe Material:	Concrete				
No.	m+	Code	Observation	- F	JUNETE				
1	0.00	МН	Start node type, manhole, reference no	umber: S11					
2	7.22		Connection other than junction at 1 o'c						
1,000	30.65		Connection other than junction at 1 o'c						

Tel. 021 - 4770797 info@munsterdrain.com

Section Summary

Project Name	Project Number	Project Date
Broomfield Court, Midleton	KM.04.19.67	05/04/2019

No.	m+	Code	Observation						
4	30.84	CN							
5	53.11	CN	Connection other than junction						
6	53.16	CN		on at 1 o'clock, diameter: 150mm					
7	55.46	MHF	Finish node type, manhole, re	eference number: S12					
	tion Direc		S12X Downstream	Upstream Node: Downstream Node:	S12 S13				
	ted Lengt	h:	68.87 m	Dia/Height:	600 mm				
l otal L	ength:		68.87 m	Pipe Material:	Concrete				
No.	m+	Code	Observation						
1	0.00	МН	Start node type, manhole, ref	ference number: S12					
2	1.65	WL	Water level, 10% of the vertice	cal dimension					
3	2.84	CN	Connection other than junction	on at 12 o'clock, diameter: 150mm					
4	12.36	CN		on at 12 o'clock, diameter: 150mm					
5	27.79	CN		n at 12 o'clock, diameter: 100mm					
6	68.87	MHF	Finish node type, manhole, re						

Tel. 021 - 4770797 info@munsterdrain.com

Section Inspection - 05/04/2019 - S1X

					Section 2012 Control Management of Control		
Section 2	Inspection 1	Date 05/04/19	Time 7:05	Client's Job Ref KM.04.19.67	Weather No Rain Or Snow	Pre Cleaned Yes	PLR S1X
- ALCO	erator h Murray	Vehi 14		Camera Mini-Cam	Preset Length Not Specified	Legal Status Not Specified	Alternative ID Not Specified

Town or Village:	Midleton	Inspection Direction:	Upstream	Upstream Node:	S1
Road:	Broomfield	Inspected Length:	13.36 m	Upstream Pipe Depth:	3.150 m
Location:	Road	Total Length:	13.36 m	Downstream Node:	S2
Surface Type:	Asphalt Highway	Joint Length:	0.00 m	Downstream Pipe Depth:	3.330 m
Use:	Surface water		Pipe Shape:	Circular	
Type of Pipe:	Gravity drain/sewer		Dia/Height:	450 mm	
Year Constructed:			Pipe Material:	Polyvinyl chloride	
Flow Control:	No flow control		Lining Type:	No Lining	
Inspection Purpose:	Sample survey to de	termine asset condition	Lining Material:	No Lining	

Comments:

Scale: 1:117

Recommendations:

Position [m] Code Observation

MPEG

Photo Gra

Grade

Depth: 3.33 m

S2

0.00

MH Start node type, manhole, reference number: S2

00:00:00

13.36

MHF

Finish node type, manhole, reference number: S1

00:01:26

31

Depth: 3.15 m

STR No. Def	STR Peak	STR Mean	STR Total	STR Grade	SER No. Def	SER Peak	SER Mean	SER Total	SER Grade
0	0.0	0.0	0.0	1.0	0	0.0	0.0	0.0	1.0

Tel. 021 - 4770797 info@munsterdrain.com

Section Pictures - 05/04/2019 - S1X

Section Inspection Direction PLR Client's Job Ref Upstream S1X KM.04.19.67 Contractor's Job Ref

S1X_fb6e0b6d-9bc2-4073-a808-d941a78430c0_20190405_0 72359_148.jpg, 00:00:00, 0.00 m Start node type, manhole, reference number: S2

S1X_ca35267c-2005-4aaa-a9e6-63c0758e75ec_20190405_0 72534_741.jpg, 00:01:26, 13.36 m Finish node type, manhole, reference number: S1

Tel. 021 - 4770797 info@munsterdrain.com

Section Inspection - 05/04/2019 - S2X

Section	Inspection	Date 05/04/19	Time 7:28	Client's Job Ref KM.04.19.67	Weather No Rain Or Snow	Pre Cleaned Yes	PLR S2X
3	1	03/04/13	1.20	1		Land Ctatue	Alternative ID
	erator	Vehi		Camera Mini-Cam	Preset Length Not Specified	Legal Status Not Specified	Not Specified

Midleton Avoncore Place Road Asphalt Highway	Inspection Direction: Inspected Length: Total Length: Joint Length:	Downstream 34.89 m 34.89 m 0.00 m	Upstream Node: Upstream Pipe Depth: Downstream Node: Downstream Pipe Depth:	S2 3.330 m S3 2.565 m
Surface water		Pipe Shape:	Circular	
Gravity drain/sewer		Dia/Height:	450 mm	
		Pipe Material:	Polyvinyl chloride	
No flow control		Lining Type:	No Lining	
Sample survey to de	etermine asset condition	Lining Material:	No Lining	
	Avoncore Place Road Asphalt Highway Surface water Gravity drain/sewer No flow control	Avoncore Place Road Asphalt Highway Surface water Gravity drain/sewer No flow control Inspected Length: Joint Length: Value of the property	Avoncore Place Road Total Length: Asphalt Highway Joint Length: 0.00 m Surface water Gravity drain/sewer No flow control Inspected Length: 34.89 m 0.00 m Pipe Shape: Dia/Height: Pipe Material: Lining Type:	Avoncore Place Road Total Length: 34.89 m Asphalt Highway Joint Length: 0.00 m Surface water Gravity drain/sewer No flow control Inspected Length: 34.89 m Jownstream Node: Downstream Pipe Depth: Downstream Node: Downstream Pipe Depth: Downstream Pipe Depth: Downstream Node: Downstream Pipe Depth: Downstream Pi

Comments:

Recommendations:

1	Scale:	1:304	Position [m]	Code	Observation	MPEG	Photo	Grade

Depth: 2.57 m

S3

STR No. Def	STR Peak	STR Mean	STR Total	STR Grade	SER No. Def	SER Peak	SER Mean	SER Total	SER Grade
0	0.0	0.0	0.0	1.0	0	0.0	0.0	0.0	1.0

Tel. 021 - 4770797 info@munsterdrain.com

Section Pictures - 05/04/2019 - S2X

SectionInspection DirectionPLRClient's Job RefContractor's Job Ref3DownstreamS2XKM.04.19.67

S2X_2608f175-6544-4e1c-a755-5bcd4680625b_20190405_0 72911_710.jpg, 00:00:00, 0.00 m Start node type, manhole, reference number: S2

S2X_3c24dd86-e9c2-4854-a02e-26cc4f794fcc_20190405_07 3041_501.jpg, 00:01:20, 14.35 m Water level, 5% of the vertical dimension

S2X_145dd4f1-9c8c-4397-98e5-7cbd74295ccd_20190405_0 73325_858.jpg, 00:03:29, 34.89 m Finish node type, manhole, reference number: S3

Tel. 021 - 4770797 info@munsterdrain.com

Section Inspection - 05/04/2019 - S3X

Section 5	Inspection 1	Date 05/04/19	Time 8:14	Client's Job Ref KM.04.19.67	Weather No Rain Or Snow	Pre Cleaned Yes	PLR S3X
	erator th Murray	Vehi 14		Camera Mini-Cam	Preset Length Not Specified	Legal Status Not Specified	Alternative ID Not Specified

Town or Village:	Midleton	Inspection Direction:	Upstream	Upstream Node:	S3
Road:	Brookdale	Inspected Length:	14.68 m	Upstream Pipe Depth:	2.565 m
Location:	Road	Total Length:	14.68 m	Downstream Node:	S4
Surface Type:	Asphalt Highway	Joint Length:	0.00 m	Downstream Pipe Depth:	2.050 m
Use:	Surface water		Pipe Shape:	Circular	
Type of Pipe:	Gravity drain/sewer		Dia/Height:	450 mm	
Year Constructed:			Pipe Material:	Polyvinyl chloride	
Flow Control:	No flow control		Lining Type:	No Lining	
Inspection Purpose:	Sample survey to de	termine asset condition	Lining Material:	No Lining	

Comments: Recommendations:

Scale: 1:128 Position [m] Code Observation MPEG Photo Grade

Depth: 2.05 m

STR No. Def	STR Peak	STR Mean	STR Total	STR Grade	SER No. Def	SER Peak	SER Mean	SER Total	SER Grade
0	0.0	0.0	0.0	1.0	0	0.0	0.0	0.0	1.0

Depth: 2.57 m

Tel. 021 - 4770797 info@munsterdrain.com

Section Pictures - 05/04/2019 - S3X

Section Inspection Direction
5 Upstream

S3X

Client's Job Ref KM.04.19.67

S3X_9e923133-f59a-4261-918a-f2247a8f9391_20190405_08 1548_768.jpg, 00:00:00, 0.00 m Start node type, manhole, reference number: S4

S3X_51ac9785-3074-40fa-9406-ab5ca25e2d2c_20190405_0 81701_604.jpg, 00:00:51, 1.98 m Water level, 20% of the vertical dimension

S3X_e1f5476d-f88c-4819-a01c-ac833c89ea8f_20190405_08 2226_733.jpg, 00:05:56, 12.99 m General photograph taken at this point

S3X_3154a530-4788-4cb9-9b2f-c8e0ef97cbe9_20190405_08 2323_160.jpg, 00:06:46, 14.68 m Finish node type, manhole, reference number: S3

Tel. 021 - 4770797 info@munsterdrain.com

Section Inspection - 05/04/2019 - S4X

Section 4	Inspection 1	Date 05/04/19	Time 8:01	Client's Job Ref KM.04.19.67	Weather No Rain Or Snow	Pre Cleaned Yes	PLR S4X
200	erator h Murray	Vehi 14		Camera Mini-Cam	Preset Length Not Specified	Legal Status Not Specified	Alternative ID Not Specified

Town or Village:	Midleton	Inspection Direction:	Upstream	Upstream Node:	S4
Road:	Brookdale	Inspected Length:	65.17 m	Upstream Pipe Depth:	2.050 m
Location:	Road	Total Length:	65.17 m	Downstream Node:	S5
Surface Type:	Asphalt Highway	Joint Length:	0.00 m	Downstream Pipe Depth:	2.630 m
Use:	Surface water		Pipe Shape:	Circular	B. 33 (Call 1998)
Type of Pipe:	Gravity drain/sewer		Dia/Height:	450 mm	
Year Constructed:			Pipe Material:	Concrete	
Flow Control:	No flow control		Lining Type:	No Lining	
Inspection Purpose:	Sample survey to det	ermine asset condition	Lining Material:	No Lining	

Comments: Recommendations:

cale:	1:562	Position [m]	Code	Observation	MPEG	Photo	Grade
	Depth: 2.6	33 m 0.00	MH	Start node type, manhole, reference number: S5	00:00:00		
	\$5	0.59	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:00:11		
	0	4.16	CN	Connection other than junction at 12 o'clock, diameter: 150mm	00:00:38		
	0	8.54	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:01:12		
	0	16.53	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:02:01		
	0	22.05	CN	Connection other than junction at 12 o'clock, diameter: 150mm	00:02:52		
	0	24.68	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:03:25		
1	0	32.38	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:04:12		
	0	36.31	CN	Connection other than junction at 12 o'clock, diameter: 150mm	00:04:43		
		38.59	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:05:11		
	0	46.36	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:05:59		
		49.34	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:06:25		
	0 0	58.93	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:07:39		
	B	61.19	CN	Connection other than junction at 12 o'clock, diameter: 150mm	00:08:11		
		64.09	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:08:39		

Tel. 021 - 4770797 info@munsterdrain.com

Section Inspection - 05/04/2019 - S4X

Section	Inspection	Date 05/04/19	Time	Client's Job Ref	Weather	Pre Cleaned	PLR
4	1		8:01	KM.04.19.67	No Rain Or Snow	Yes	S4X
100	erator h Murray	Vehi 14		Camera Mini-Cam	Preset Length Not Specified	Legal Status Not Specified	Alternative ID Not Specified

Scale:

Position [m] 65.17

Code Observation MHF

Finish node type, manhole, reference number: S4

MPEG

Photo Grade

00:08:55

Depth: 2.05 m

STR No Dof	STD Dook	CTD Mass	OTD T						
OTIVITO. DEI	SIR Feak	31K Wean	SIR Iotal	STR Grade	SER No. Def	SER Peak	SER Mean	SER Total	SER Grade
0	0.0	0.0	0.0	1.0	0		- Livinoun	OLIV TOTAL	SER Grade
	0.0	0.0	0.0	1.0	0	0.0	0.0	0.0	1.0
Broomfield Co	and Adiable to a						0.0	0.0	1.0

Tel. 021 - 4770797 info@munsterdrain.com

Section Pictures - 05/04/2019 - S4X

Section

Inspection Direction
Upstream

PLR S4X Client's Job Ref KM.04.19.67

S4X_6b0fc3f3-69d8-4222-817c-d3ec9f1d921d_20190405_08 0239_607.jpg, 00:00:00, 0.00 m Start node type, manhole, reference number: S5

S4X_6021ae2c-959a-4f2c-99e0-d2c84a075fe2_20190405_08 0341_009.jpg, 00:00:38, 4.16 m Connection other than junction at 12 o'clock, diameter:

S4X_0a309ee2-7cfd-4233-bd52-868781fad4a2_20190405_08 0558_786.jpg, 00:02:01, 16.53 m Connection other than junction at 12 o'clock, diameter:

S4X_a5e9ed2b-8f8f-494b-b06d-fe2155b6fd24_20190405_080 304_982.jpg, 00:00:11, 0.59 m Connection other than junction at 12 o'clock, diameter:

S4X_802735c8-86e0-42c0-8b8c-a67a50e5e5f3_20190405_0 80501_375.jpg, 00:01:12, 8.54 m Connection other than junction at 12 o'clock, diameter:

S4X_054fcaef-7066-4d99-b900-6afa1e02cb72_20190405_08 0704_434.jpg, 00:02:52, 22.05 m Connection other than junction at 12 o'clock, diameter:

Tel. 021 - 4770797 info@munsterdrain.com

Section Pictures - 05/04/2019 - S4X

Section

Inspection Direction Upstream

PLR S4X Client's Job Ref KM.04.19.67

S4X_8113a11a-517e-4edd-8ac4-bde4a3698e20_20190405_0 80913_677.jpg, 00:04:43, 36.31 m Connection other than junction at 12 o'clock, diameter:

S4X_1c539c1b-af17-430a-a122-eb39745caf70_20190405_08 1045_894.jpg, 00:05:59, 46.36 m Connection other than junction at 12 o'clock, diameter:

S4X_4dd6337d-9aba-4882-aa9d-5cf20b35e773_20190405_0 80834_359.jpg, 00:04:12, 32:38 m Connection other than junction at 12 o'clock, diameter:

S4X_b34d13cd-a11f-4f5a-83bd-292a71613fec_20190405_08 0949_148.jpg, 00:05:11, 38.59 m Connection other than junction at 12 o'clock, diameter:

S4X_70a28ef5-6797-4dd6-b806-d4c54aea946f_20190405_08 1119_111.jpg, 00:06:25, 49.34 m Connection other than junction at 12 o'clock, diameter:

Tel. 021 - 4770797 info@munsterdrain.com

Section Pictures - 05/04/2019 - S4X

Section

Inspection Direction Upstream

PLR S4X Client's Job Ref KM.04.19.67

S4X_0e1e6e37-3caa-43e9-b2cf-042f1139d628_20190405_08 1240_534.jpg, 00:07:39, 58.93 m Connection other than junction at 12 o'clock, diameter:

S4X_a38e43f0-4d8b-475b-90dc-9483a57644e7_20190405_0 81355_262.jpg, 00:08:39, 64.09 m Connection other than junction at 12 o'clock, diameter:

S4X_0a9403e3-fb40-4f72-b1bf-ef6ebd8fc1bf_20190405_0813 20_079.jpg, 00:08:11, 61.19 m Connection other than junction at 12 o'clock, diameter:

S4X_bb89ef55-97ee-4461-8fa9-05e0bdeb471d_20190405_08 1415_982.jpg, 00:08:55, 65.17 m Finish node type, manhole, reference number: S4

Tel. 021 - 4770797 info@munsterdrain.com

Section Inspection - 05/04/2019 - S5X

Section	Inspection	Date 05/04/19	Time	Client's Job Ref	Weather	Pre Cleaned	PLR
0			8:31	KM.04.19.67	No Rain Or Snow	Yes	S5X
	erator h Murray	Vehi 14	70	Camera Mini-Cam	Preset Length Not Specified	Legal Status Not Specified	Alternative ID Not Specified

Midleton	Inspection Direction:	Downstream	Unstream Node:	C.E.	
Brookdale				(ATS/TEE)	
Road	Total Length:	AND CONTROL OF THE STATE OF THE		Carlotte Control of the Control of t	1 Page
Asphalt Highway	Joint Length:	0.00 m			
Surface water		Pipe Shape:		2.330 111	
Gravity drain/sewer		Company of the compan			
		The second secon			
No flow control		The state of the s			
Sample survey to de	termine asset condition	Lining Material:	No Lining		
	Brookdale Road Asphalt Highway Surface water Gravity drain/sewer	Brookdale Inspected Length: Road Total Length: Asphalt Highway Joint Length: Surface water Gravity drain/sewer	Brookdale Inspected Length: 51.90 m Road Total Length: 51.90 m Asphalt Highway Joint Length: 0.00 m Surface water Gravity drain/sewer Pipe Shape: Dia/Height: Pipe Material: Lining Type:	Brookdale Inspected Length: 51.90 m Upstream Node: Road Total Length: 51.90 m Downstream Node: Asphalt Highway Joint Length: 0.00 m Downstream Pipe Depth: Surface water Gravity drain/sewer Dia/Height: 450 mm Pipe Material: Concrete No flow control Lining Type: No Lining	Brookdale Road Asphalt Highway Surface water Gravity drain/sewer Total Length: Downstream Node: S5 1.90 m Downstream Node: S6 Downstream Node: S6 Downstream Pipe Depth: 2.630 m Downstream Pipe Depth: 2.330 m Downstream Pipe Depth: 2.330 m Downstream Pipe Depth: 2.330 m Downstream Pipe Depth: 2.330 m Downstream Pipe Depth: 2.330 m Downstream Pipe Depth: 2.330 m Downstream Pipe Depth: 2.330 m Downstream Pipe Depth: 2.330 m Downstream Pipe Depth: 2.330 m Downstream Pipe Depth: 2.330 m Downstream Pipe Depth: 2.330 m Downstream Pipe Depth: 2.330 m Downstream Pipe Depth: 2.330 m Downstream Pipe Depth: 2.330 m Downstream Pipe Depth: 2.330 m Downstream Pipe Depth: 2.330 m Downstream Pipe Depth: 2.330 m

Recommendations:

Scale:	1:452	Position [m]	Code	Observation	MPEG	Photo	Grade

Depth: 2.63 m

STR No Def	STP Poak	CTD Mann	CTD T-4-1		SER No. Def				
^	OTTOTOTAL	STR Wear	SIR Iotal	STR Grade	SER No. Def	SER Peak	SER Mean	SER Total	SER Grado
U	0.0	0.0	0.0	1.0	1	10.0	0.2	40.0	OLIT Grade
			1130 - 10-Ex			10.0	0.2	10.0	5.0

Tel. 021 - 4770797 info@munsterdrain.com

Section Pictures - 05/04/2019 - S5X

Section 6

Inspection Direction Downstream

PLR

Client's Job Ref KM.04.19.67

S5X_3a8da4cf-5542-444f-a34e-e58f58df49c0_20190405_090 223_838.jpg, 00:00:00, 0.00 m Start node type, manhole, reference number: S5

0306_660.jpg, 00:00:30, 4.83 m Connection other than junction at 12 o'clock, diameter:

S5X_bd0ee04a-35e7-4a44-b67f-3794dc58536d_20190405_0 90545_028.jpg, 00:03:01, 17.03 m Connection other than junction at 12 o'clock, diameter:

S5X_4b0726a5-1b8e-4719-8026-5574e0baccf4_20190405_0 90622_341.jpg, 00:03:30, 21.52 m Connection other than junction at 12 o'clock, diameter:

S5X_e997d85e-513a-4c9e-a330-d3a995be0e1e_20190405_0 90707_939.jpg, 00:04:08, 27.37 m Connection other than junction at 12 o'clock, diameter:

S5X_dc88f43e-10f2-439f-90a0-45b58179b8de_20190405_09 0759_213.jpg, 00:04:51, 34.29 m Connection other than junction at 12 o'clock, diameter:

Tel. 021 - 4770797 info@munsterdrain.com

Section Pictures - 05/04/2019 - S5X

Section 6 Inspection Direction
Downstream

PLR S5X

Client's Job Ref KM.04.19.67

S5X_b30b547f-62c6-437a-8a7e-d78a072d496e_20190405_0 90834_506.jpg, 00:05:12, 36.11 m Connection other than junction at 12 o'clock, diameter:

S5X_5188388e-7b81-4df1-9aaa-194757a45e84_20190405_0 91014_963.jpg, 00:06:34, 49.28 m Connection other than junction at 11 o'clock, diameter:

S5X_56b9a2bb-9e90-4269-8e9d-ab53078964d4_20190405_0 91158_715.jpg, 00:07:24, 51.90 m Survey abandoned

S5X_a2af812d-00a0-49d5-82f5-9c2578d3b00a_20190405_09 0914_929.jpg, 00:05:45, 41.03 m Connection other than junction at 12 o'clock, diameter:

S5X_d9c04386-cfdb-4432-a2e0-6620da3a2084_20190405_0 91108_192.jpg, 00:06:56, 51.22 m Connection intruding at 1 o'clock, diameter: 100mm, intrusion:

Tel. 021 - 4770797 info@munsterdrain.com

Section Inspection - 05/04/2019 - S5X

Section 8	Inspection	Date 05/04/19	Time 9:38	Client's Job Ref KM.04.19.67	Weather No Rain Or Snow	Pre Cleaned Yes	PLR S5X
Operator Kenneth Murray		Vehi 14		Camera Mini-Cam	Preset Length Not Specified	Legal Status Not Specified	Alternative ID Not Specified

Midleton	Inspection Direction:	Upstream	Upstream Node:	S5
Brookdale	Inspected Length:	14.70 m	Upstream Pipe Depth:	2.630 m
Road	Total Length:	14.70 m	Downstream Node:	S6
Asphalt Highway	Joint Length:	0.00 m	Downstream Pipe Depth:	2.330 m
Surface water		Pipe Shape:	Circular	
Gravity drain/sewer		Dia/Height:	450 mm	
		Pipe Material:	Concrete	
No flow control		Lining Type:	No Lining	
Sample survey to determine asset condition		Lining Material:	No Lining	
	Brookdale Road Asphalt Highway Surface water Gravity drain/sewer	Brookdale Inspected Length: Road Total Length: Asphalt Highway Joint Length: Surface water Gravity drain/sewer No flow control	Brookdale Inspected Length: 14.70 m Road Total Length: 14.70 m Asphalt Highway Joint Length: 0.00 m Surface water Gravity drain/sewer No flow control Pipe Material: Lining Type:	Brookdale Inspected Length: 14.70 m Upstream Pipe Depth: Road Total Length: 14.70 m Downstream Node: Asphalt Highway Joint Length: 0.00 m Downstream Pipe Depth: Surface water Pipe Shape: Circular Gravity drain/sewer Dia/Height: 450 mm Pipe Material: Concrete No flow control Lining Type: No Lining

Comments: Recommendations:

cale:	1:128	Position [m]	Code	Observation	MPEG	Photo	Grade
	Depth: 2.3	33 m					
(0.00	МН	Start node type, manhole, reference number: S6	00:00:00		
2		0.42	CN	Connection other than junction at 2 o'clock, diameter: 100mm	00:00:14		
		0.84	CXI	Connection intruding at 2 o'clock, diameter: 100mm, intrusion: 20%	00:00:28		3
		1.73	CXI	Connection intruding at 12 o'clock, diameter: 100mm, intrusion: 25%	00:00:43		4
4		4.75	CN	Connection other than junction at 1 o'clock, diameter: 100mm	00:01:18		
1							
4		8.40	CN	Connection other than junction at 2 o'clock, diameter: 100mm	00:01:52		
		14.23	CXI	Connection intruding at 11 o'clock, diameter: 100mm, intrusion: 95%	00:02:36		5
		14.70	SA	Survey abandoned: Survey Complete	00:02:45		

Tel. 021 - 4770797 info@munsterdrain.com

Section Pictures - 05/04/2019 - S5X

Section 8 Inspection Direction
Upstream

PLR S5X Client's Job Ref KM.04.19.67

S5X_104bc7a0-720a-47f0-9d37-14bde05d9d88_20190405_0 93909_790.jpg, 00:00:00, 0.00 m Start node type, manhole, reference number: S6

S5X_b7966323-76b6-459a-b1e1-98e9956461e4_20190405_0 94005_065.jpg, 00:00:28, 0.84 m Connection intruding at 2 o'clock, diameter: 100mm, intrusion:

S5X_370e06e4-84f4-4c8a-a3a3-c44a2989c107_20190405_0 94118_654.jpg, 00:01:18, 4.75 m Connection other than junction at 1 o'clock, diameter: 100mm

S5X_03b0457f-bb8e-468f-9713-1786b92e3fda_20190405_09 3935_556.jpg, 00:00:14, 0.42 m Connection other than junction at 2 o'clock, diameter: 100mm

S5X_62aa0cc2-107c-47cd-adfc-3f77a6d3f8cb_20190405_094 031_971.jpg, 00:00:43, 1.73 m Connection intruding at 12 o'clock, diameter: 100mm,

S5X_acceb949-f9b9-48f2-85ef-1e599e766fc5_20190405_094 202_125.jpg, 00:01:52, 8.40 m Connection other than junction at 2 o'clock, diameter: 100mm

Tel. 021 - 4770797 info@munsterdrain.com

Section Pictures - 05/04/2019 - S5X

Section 8 Inspection Direction Upstream

PLR S5X Client's Job Ref KM.04.19.67

S5X_1b0d48cc-b4e9-416a-a0f1-9fd0bb0d32b9_20190405_09 4303_328.jpg, 00:02:36, 14.23 m Connection intruding at 11 o'clock, diameter: 100mm,

S5X_1d400da9-4a1b-4c68-8818-be19158c9803_20190405_0 94328_528.jpg, 00:02:45, 14.70 m Survey abandoned

Tel. 021 - 4770797 info@munsterdrain.com

Section Inspection - 05/04/2019 - S6X

Section	Inenestica	D-4-							
7	Inspection 1	Date Time 05/04/19 9:24		Client's Job Ref KM.04.19.67	Weather No Rain Or Snow	Pre Cleaned	PLR		
Operator		Vehicle				Yes	S6X		
	h Murray	141		Camera Mini-Cam	Preset Length Not Specified	Legal Status Not Specified	Alternative ID		
					The opening	Not Specified	Not Specified		

Town or Village:	Latina .		140t opcomed	Not Specified	Not Specified	
	Midleton	Inspection Direction:	Downstream	Upstream Node:	S6	
Road:	Brookdale	Inspected Length:	61.18 m		and the second second	
Location:	Road	Total Length:	61.18 m	Upstream Pipe Depth:	2.330 m	
Surface Type:	Asphalt Highway	The second secon	25 A C A C A C A C A C A C A C A C A C A	Downstream Node:	S7	
Use:		Joint Length:	0.00 m	Downstream Pipe Depth:	2.800 m	
	Surface water		Pipe Shape:	Circular 600 mm		
Type of Pipe:	Gravity drain/sewer		Dia/Height:			
Year Constructed:						
Flow Control:	No flow control		Pipe Material:	Concrete		
Inspection Purpose:			Lining Type:	No Lining		
	Sample survey to det	Sample survey to determine asset condition		No Lining		
Comments:			Paster Albanda	3		

Recommendations:

Scale	1:465	Position [m]	Code	Observation	MPEG	Photo	Grade
	Depth: 2.3 S6	3 m 0.00	MH	Start node type, manhole, reference number: S6	00:00:00		
	9	4.14	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:00:39		
		4.39	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:00:46		
		14.22	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:01:54		
	8	14.77	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:02:07		
		18.16	CN	Connection other than junction at 11 o'clock, diameter: 100mm	00:02:37		
		18.17	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:02:43		
	•	27.51	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:03:41		
	0	27.62	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:03:47		
		32.56	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:04:20		
	8	34.61	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:04:39		
		41.57	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:05:23		
		42.14	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:05:35		
	8	48.17	CXI	Connection intruding at 12 o'clock, diameter: 100mm, intrusion: 20%	00:06:23		3
		52.98	CXI	Connection intruding at 12 o'clock, diameter: 100mm, intrusion; 80%	00:07:02		5

Tel. 021 - 4770797 info@munsterdrain.com

Section Inspection - 05/04/2019 - S6X

Section	Inspection	Date	Time	0" "			
7	1	05/04/19	Time 9:24	Client's Job Ref KM.04.19.67	Weather No Rain Or Snow	Pre Cleaned Yes	PLR
Operator Kenneth Murray		Vehicle 141		Camera			S6X
				Mini-Cam	Preset Length Not Specified	Legal Status Not Specified	Alternative ID Not Specified

Tel. 021 - 4770797 info@munsterdrain.com

Section Pictures - 05/04/2019 - S6X

Section

Inspection Direction Downstream PLR S6X Client's Job Ref KM.04.19.67

S6X_8127d366-a7dc-4957-9b17-592a26f26520_20190405_0 92527_372.jpg, 00:00:00, 0.00 m Start node type, manhole, reference number: S6

S6X_a4098aa4-0653-4636-a51a-36339279b92e_20190405_0 92636_205.jpg, 00:00:46, 4.39 m Connection other than junction at 12 o'clock, diameter:

S6X_81383c55-9e7a-4746-8099-ef1c849ac6b8_20190405_0 92812_269.jpg, 00:02:07, 14.77 m Connection other than junction at 12 o'clock, diameter:

S6X_91b31115-cf97-4745-8a43-0827462e78b0_20190405_0 92621_053.jpg, 00:00:39, 4.14 m Connection other than junction at 12 o'clock, diameter:

S6X_c9ec7afd-1a4f-4ea7-9098-e3660764c0f2_20190405_09 2750_886.jpg, 00:01:54, 14.22 m Connection other than junction at 12 o'clock, diameter:

Tel. 021 - 4770797 info@munsterdrain.com

Section Pictures - 05/04/2019 - S6X

Section

Inspection Direction Downstream

PLR S6X

Client's Job Ref KM.04.19.67

S6X_bdf240ab-03ce-4839-a13b-4a7ff26210f2_20190405_092 906_364.jpg, 00:02:43, 18.17 m Connection other than junction at 12 o'clock, diameter:

S6X_d6038f54-fdae-433f-a67f-0de6ba9aa6ba_20190405_093 028_351.jpg, 00:03:47, 27.62 m Connection other than junction at 12 o'clock, diameter:

S6X_ddbe4989-b184-447f-9b4f-07cca075102e_20190405_09 3136_478.jpg, 00:04:39, 34.61 m Connection other than junction at 12 o'clock, diameter:

S6X_906c9892-9f70-4388-9326-8bfcfe449905_20190405_09 3015_084.jpg, 00:03:41, 27.51 m Connection other than junction at 12 o'clock, diameter:

S6X_3f5f0a68-e51d-4e08-a22b-9b6fb0ced204_20190405_09 3108_985.jpg, 00:04:20, 32.56 m Connection other than junction at 12 o'clock, diameter:

Tel. 021 - 4770797 info@munsterdrain.com

Section Pictures - 05/04/2019 - S6X

Section

Inspection Direction
Downstream

PLR S6X

Client's Job Ref KM.04.19.67

S6X_28decd9d-07d9-44c7-92b2-5de24c9dc43b_20190405_0 93250_338.jpg, 00:05:35, 42.14 m Connection other than junction at 12 o'clock, diameter:

S6X_884f3d3d-f874-4854-8418-3b70886c52c6_20190405_09 3453_196.jpg, 00:07:02, 52.98 m Connection intruding at 12 o'clock, diameter: 100mm,

S6X_c5a221d9-8216-4a70-82c9-317fa8dbc8cf_20190405_09 3635_123.jpg, 00:08:05, 58.07 m Connection other than junction at 12 o'clock, diameter:

S6X_0d19f72f-ee95-4bcb-a8f3-93b19fae9762_20190405_093 350_333.jpg, 00:06:23, 48.17 m Connection intruding at 12 o'clock, diameter: 100mm,

\$6X_db2ccba5-02ab-4808-a2f3-f6fb28bc5a34_20190405_09 3553_252.jpg, 00:07:32, 53.79 m Connection intruding at 12 o'clock, diameter: 100mm,

S6X_2600c881-53cf-4c40-b02b-ee08dc7ae9b1_20190405_0 93705_399.jpg, 00:08:30, 61.18 m Finish node type, manhole, reference number: S7

Tel. 021 - 4770797 info@munsterdrain.com

Section Inspection - 05/04/2019 - S7X

Section 9	Inspection 1	Date 05/04/19	Time 9:49	Client's Job Ref KM.04.19.67	Weather No Rain Or Snow	Pre Cleaned Yes	PLR S7X
100	erator h Murray	Vehi 14	200	Camera Mini-Cam	Preset Length Not Specified	Legal Status Not Specified	Alternative ID Not Specified

Town or Village:	Midleton	Inspection Direction:	Downstream	Upstream Node:	S7
Road:	Avoncore Estate	Inspected Length:	31.38 m	Upstream Pipe Depth:	2.800 m
Location:	Road	Total Length:	31.38 m	Downstream Node:	S8
Surface Type:	Asphalt Highway	Joint Length:	0.00 m	Downstream Pipe Depth:	2.630 m
Use:	Surface water		Pipe Shape:	Circular	
Type of Pipe:	Gravity drain/sewer		Dia/Height:	600 mm	
Year Constructed:			Pipe Material:	Concrete	
Flow Control:	No flow control		Lining Type:	No Lining	
Inspection Purpose:	Sample survey to determine asset condition		Lining Material:	No Lining	

Comments:

mendatio	ons:					
1:273	Position [m]	Code	Observation	MPEG	Photo	Grade
Depth: 2.8	80 m					
	0.00	МН	Start node type, manhole, reference number: S7	00:00:00		
	0.00	GP	General photograph taken at this point: Concrete in line	00:00:07		
	0.00	СМ	Cracks, multiple from 4 o'clock to 6 o'clock	00:00:24		3
	0.00	FS	Fracture spiral from 9 o'clock to 3 o'clock	00:00:40		4
	0.07	GP	General photograph taken at this point: Pipe layed through surveying pipe	00:00:54		
	0.07	SRB	Sealing ring broken from 3 o'clock to 9 o'clock	00:01:01		1
	0.37	CS	Cracks, spiral from 12 o'clock to 12 o'clock	00:01:21		3
	1.34	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:01:38		
0	3.48	GP	General photograph taken at this point: Concrete in line	00:01:58		
	5.72	CN	Connection other than junction at 1 o'clock, diameter: 100mm	00:02:16		
	21.87	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:03:30		
	1:273 Depth: 2.4	0.00 0.00 0.00 0.00 0.07 0.07 0.37 1.34 3.48 5.72	1:273 Position [m] Code Depth: 2.80 m	1:273 Position [m] Code Observation Depth: 2.80 m S7 0.00 MH Start node type, manhole, reference number: S7 0.00 GP General photograph taken at this point: Concrete in line 0.00 CM Cracks, multiple from 4 o'clock to 6 o'clock 1.00 GP General photograph taken at this point: Pipe layed through surveying pipe 0.07 GP General photograph taken at this point: Pipe layed through surveying pipe 0.07 SRB Sealing ring broken from 3 o'clock to 9 o'clock 1.34 CN Connection other than junction at 12 o'clock, diameter: 100mm 3.48 GP General photograph taken at this point: Concrete in line 5.72 CN Connection other than junction at 1 o'clock, diameter: 100mm 21.87 CN Connection other than junction at 12 o'clock, diameter:	1:273 Position [m] Code Observation MPEG Depth: 2.80 m S7 0.00 MH Start node type, manhole, reference number: S7 00:00:00 0.00 GP General photograph taken at this point: Concrete in line 00:00:07 0.00 CM Cracks, multiple from 4 o'clock to 6 o'clock 00:00:24 0.00 FS Fracture spiral from 9 o'clock to 3 o'clock 00:00:40 0.07 GP General photograph taken at this point: Pipe layed through surveying pipe 0.07 SRB Sealing ring broken from 3 o'clock to 9 o'clock 00:01:01 0.37 CS Cracks, spiral from 12 o'clock to 12 o'clock 00:01:21 1.34 CN Connection other than junction at 12 o'clock, diameter: 00:01:38 1.00mm 3.48 GP General photograph taken at this point: Concrete in line 00:01:58 5.72 CN Connection other than junction at 1 o'clock, diameter: 00:02:16 100mm	Position [m] Code Observation MPEG Photo Depth: 2.80 m S7 0.00 MH Start node type, manhole, reference number: S7 00:00:00 0.00 GP General photograph taken at this point: Concrete in line 00:00:07 0.00 CM Cracks, multiple from 4 o'clock to 6 o'clock 00:00:24 0.00 FS Fracture spiral from 9 o'clock to 3 o'clock 00:00:40 0.07 GP General photograph taken at this point: Pipe layed through surveying pipe 0.07 SRB Sealing ring broken from 3 o'clock to 9 o'clock 00:01:01 0.37 CS Cracks, spiral from 12 o'clock to 12 o'clock 00:01:21 1.34 CN Connection other than junction at 12 o'clock, diameter: 00:01:58 5.72 CN Connection other than junction at 1 o'clock, diameter: 00:02:16 100mm 21.87 CN Connection other than junction at 12 o'clock, diameter: 00:03:30

Depth: 2.63 m

31.38

MHF

STR No. Def	STR Peak	STR Mean	STR Total	STR Grade	SER No. Def	SER Peak	SER Mean	SER Total	SER Grade
4	165.0	5.3	165.0	4.0	0	0.0	0.0	0.0	1.0

Finish node type, manhole, reference number: S8

00:04:26

Tel. 021 - 4770797 info@munsterdrain.com

Section Pictures - 05/04/2019 - S7X

Section 9 Inspection Direction
Downstream

PLR S7X

Client's Job Ref KM.04.19.67

S7X_61b2b2d6-a4dc-436d-b3c1-1745fe7a4a02_20190405_0 95008_174.jpg, 00:00:00, 0.00 m Start node type, manhole, reference number: S7

S7X_e95e40db-f421-4224-9e8c-5d1c64228623_20190405_0 95114_099.jpg, 00:00:24, 0.00 m Cracks, multiple from 4 o'clock to 6 o'clock

S7X_ca062aaf-6af5-4bed-ad91-987a9282a6d7_20190405_09 5147_073.jpg, 00:00:40, 0.00 m Fracture spiral from 9 o'clock to 3 o'clock

S7X_507b6eab-e483-4ccb-9798-b9840ae9fe90_20190405_0 95241_489.jpg, 00:01:01, 0.07 m Sealing ring broken from 3 o'clock to 9 o'clock

Tel. 021 - 4770797 info@munsterdrain.com

Section Pictures - 05/04/2019 - S7X

Section 9 Inspection Direction
Downstream

PLR S7X

Client's Job Ref KM.04.19.67

S7X_7668e268-54dd-4054-bff4-0173f5f9763b_20190405_095 314_961.jpg, 00:01:21, 0.37 m Cracks, spiral from 12 o'clock to 12 o'clock

S7X_45db0c5d-8ed2-4482-a9ef-89be9f78f5ff_20190405_095 410_824.jpg, 00:01:58, 3.48 m General photograph taken at this point

S7X_31436574-988a-4e7e-9a63-8803c35111fa_20190405_0 95559_947.jpg, 00:03:30, 21.87 m Connection other than junction at 12 o'clock, diameter:

S7X_5389aa5f-4fe3-4cf8-b377-cfb7861908ba_20190405_095 338_868.jpg, 00:01:38, 1.34 m Connection other than junction at 12 o'clock, diameter:

S7X_a6d2ef8d-17e9-4708-9152-e0ca7997194e_20190405_0 95701_470.jpg, 00:04:26, 31.38 m Finish node type, manhole, reference number: S8

Tel. 021 - 4770797 info@munsterdrain.com

Section Inspection - 05/04/2019 - S8X

				produce the same series of the same of the			
Section 10	Inspection 1	Date 05/04/19	Time 11:25	Client's Job Ref KM.04.19.67	Weather No Rain Or Snow	Pre Cleaned Yes	PLR S8X
	erator h Murray	Veh	600000	Camera Mini-Cam	Preset Length Not Specified	Legal Status Not Specified	Alternative ID Not Specified

Town or Village:	Midleton	Inspection Direction:	Downstream	Upstream Node:	S8	
Road:	Avoncore Estate	Inspected Length:	78.81 m	Upstream Pipe Depth:	2.630 m	
Location:	Road	Total Length:	78.81 m	Downstream Node:	S9	
Surface Type:	Asphalt Highway	Joint Length:	0.00 m	Downstream Pipe Depth:	2.180 m	
Use:	Surface water		Pipe Shape:	Circular		
Type of Pipe:	Gravity drain/sewer		Dia/Height:	600 mm		
Year Constructed:			Pipe Material:	Concrete		
Flow Control:	No flow control		Lining Type:	No Lining		
Inspection Purpose:	Sample survey to de	termine asset condition	Lining Material:	No Lining		

Comments:

Recommendations:

Scale: 1:686 Position [m] Code Observation MPEG Photo Grade

Depth: 2.63 m

0.00

S8

MH Start node type, manhole, reference number: S8 00:00:00

78.81

SA Survey abandoned: Survey will continue from other end

00:14:34

Tel. 021 - 4770797 info@munsterdrain.com

Section Pictures - 05/04/2019 - S8X

 Section
 Inspection Direction
 PLR
 Client's Job Ref
 Contractor's Job Ref

 10
 Downstream
 S8X
 KM.04.19.67

S8X_416171ae-cd8c-4dee-a7c8-081971adace7_20190405_1 12732_811.jpg, 00:00:00, 0.00 m Start node type, manhole, reference number: S8

S8X_f3ae3c52-c9e2-435d-85d9-ce996e3978a7_20190405_1 14838_269.jpg, 00:14:34, 78.81 m Survey abandoned

Tel. 021 - 4770797 info@munsterdrain.com

Section Inspection - 05/04/2019 - S8X

Section	Inspection	Date 05/04/19	Time	Client's Job Ref	Weather	Pre Cleaned	PLR
11	1		12:00	KM.04.19.67	No Rain Or Snow	Yes	S8X
Operator Kenneth Murray		Vehicle 141		Camera Mini-Cam	Preset Length Not Specified	Legal Status Not Specified	Alternative ID Not Specified

Town or Village:	Midleton	Inspection Direction:	Upstream	Upstream Node:	S8	
Road:	Avoncore Estate	Inspected Length:	20.73 m	Upstream Pipe Depth:	2.630 m	
Location:	Road	Total Length:	20.73 m	Downstream Node:	S9	
Surface Type:	Asphalt Highway	Joint Length:	0.00 m	Downstream Pipe Depth:	5.5	
Use:	Surface water		Pipe Shape:	Circular	2.100 111	
Type of Pipe:	Gravity drain/sewer		Dia/Height:	600 mm		
Year Constructed:			Pipe Material:	Concrete		
Flow Control:	No flow control		Lining Type:	No Lining No Lining		
Inspection Purpose:	Sample survey to det	termine asset condition	Lining Material:			

Comments:

Recommendations:

Scale: 1:181 Position [m] Code Observation MPEG Photo Grade

Depth: 2.18 m

0.00 MH Start node type, manhole, reference number: S9

SA

00:01:52

00:00:00

Survey abandoned: Survey Complete

20.73

Tel. 021 - 4770797 info@munsterdrain.com

Section Pictures - 05/04/2019 - S8X

SectionInspection DirectionPLRClient's Job RefContractor's Job Ref11UpstreamS8XKM.04.19.67

S8X_7e3b0df1-74e1-44e9-b001-48fa4edb2e65_20190405_12 0112_208.jpg, 00:00:00, 0.00 m Start node type, manhole, reference number: S9

S8X_dd51b15e-55e5-42e3-8028-90a36a45cfef_20190405_12 0328_014.jpg, 00:01:52, 20.73 m Survey abandoned

Tel. 021 - 4770797 info@munsterdrain.com

Section Inspection - 05/04/2019 - S9X

Section	Inspection	Date	Time	Client's Job Ref	Weather	Pre Cleaned	PLR
12		05/04/19	12:05	KM.04.19.67	No Rain Or Snow	Yes	S9X
	erator h Murray	Vehi		Camera Mini-Cam	Preset Length Not Specified	Legal Status Not Specified	Alternative ID Not Specified

Town or Village:	Midleton	Inspection Direction:	Downstream	Upstream Node:	S9
Road:	Elm Grove	Inspected Length:	9.92 m	Upstream Pipe Depth:	2.180 m
Location:	Road	Total Length:	9.92 m	Downstream Node:	S10
Surface Type:	Asphalt Highway	Joint Length:	0.00 m	Downstream Pipe Depth:	2.130 m
Use:	Surface water		Pipe Shape:	Circular	
Type of Pipe:	Gravity drain/sewer		Dia/Height:	600 mm	
Year Constructed:			Pipe Material:	Concrete	
Flow Control:	No flow control	No flow control		No Lining	
Inspection Purpose:	Sample survey to de	termine asset condition	Lining Material:	No Lining	

Comments: Recommendations:

Scale: 1:87 Position [m] Code Observation MPEG Photo Grade

Depth: 2.18 m

S9

0.00 MH Start node type, manhole, reference number: S9 00:00:00

STR No. Def	STR Peak	STR Mean	STR Total	STR Grade	SER No. Def	SER Peak	SER Mean	SER Total	SER Grade
0	0.0	0.0	0.0	1.0	0	0.0	0.0	0.0	1.0

Depth: 2.13 m

Tel. 021 - 4770797 info@munsterdrain.com

Section Pictures - 05/04/2019 - S9X

Section 12 Inspection Direction Downstream PLR S9X Client's Job Ref KM.04.19.67

S9X_144cd6f6-0f76-4b04-90bd-f1f8add8c847_20190405_120 737_601.jpg, 00:00:00, 0.00 m Start node type, manhole, reference number: S9

S9X_ea66e2f4-6960-4c58-b4e6-be7f4ad17f91_20190405_12 0835_240.jpg, 00:00:49, 9.92 m Finish node type, manhole, reference number: S10

Tel. 021 - 4770797 info@munsterdrain.com

Section Inspection - 05/04/2019 - S10X

Section	Inspection	Date 05/04/19	Time	Client's Job Ref	Weather	Pre Cleaned	PLR
13	1		12:42	KM.04.19.67	No Rain Or Snow	Yes	S10X
Operator Kenneth Murray		Vehi 14		Camera Mini-Cam	Preset Length Not Specified	Legal Status Not Specified	Alternative ID Not Specified

Town or Village:	Midleton	Inspection Direction:	Downstream	Upstream Node:	S10	
Road:	Avoncore Estate	Inspected Length:	67.57 m	Upstream Pipe Depth:	2.130 m	
Location:	Road	Total Length:	67.57 m	Downstream Node:	S11	
Surface Type:	Asphalt Highway	Joint Length:	0.00 m	Downstream Pipe Depth:		
Use:	Surface water		Pipe Shape:	Circular		
Type of Pipe:	Gravity drain/sewer		Dia/Height:	600 mm		
Year Constructed:			Pipe Material:	Concrete		
Flow Control:	No flow control		Lining Type:	No Lining		
Inspection Purpose:	Sample survey to determine asset condition		Lining Material:	No Lining		

Comments:

Recommendations:

Scale: 1:588 Position [m] Code Observation MPEG Photo Grade

Depth: 2.13 m

0.00

МН

Start node type, manhole, reference number: S10

00:00:00

WL Water level, 10% of the vertical dimension

00:05:21

MHF Finish node type, manhole, reference number: S11

00:06:41

Depth: 1.25 m

STP No Dof	CTD Dools	OTD M			SER No. Def				
OTK NO. Del	SIK Peak	SIR Mean	SIR Total	STR Grade	SER No. Def	SER Peak	SER Moan	SED Total	CED Crede
0	0.0	0.0	0.0	1.0		OLIVI OUK	OLIV Mean	SER TOTAL	SER Grade
J	0.0	0.0	0.0	1.0	0	0.0	0.0	0.0	1.0
D						0.0	0.0	0.0	1.0

Tel. 021 - 4770797 info@munsterdrain.com

Section Pictures - 05/04/2019 - S10X

Section 13 Inspection Direction Downstream

PLR S10X Client's Job Ref KM.04.19.67 Contractor's Job Ref

\$10X_fc02f629-fa01-4181-91fa-71543718d68d_20190405_13 3713_174.jpg, 00:00:00, 0.00 m Start node type, manhole, reference number: \$10

S10X_f3b594ef-ef55-4d79-baf5-181129d52886_20190405_13 4246_959.jpg, 00:05:21, 61.26 m Water level, 10% of the vertical dimension

S10X_a69e2a28-feaf-4cff-85c4-7a83b30f4b02_20190405_13 4412_733.jpg, 00:06:41, 67.57 m Finish node type, manhole, reference number: S11

Tel. 021 - 4770797 info@munsterdrain.com

Section Inspection - 05/04/2019 - S11X

Section 1	Inspection	Date	Time	Client's Job Ref	Weather	Pre Cleaned	PLR
	1	05/04/19	15:47	KM.04.19.67	No Rain Or Snow	Yes	S11X
Operator Kenneth Murray		Vehi 14		Camera Mini-Cam	Preset Length Not Specified	Legal Status Not Specified	Alternative ID Not Specified

Town or Village:	Midleton	Inspection Direction:	Downstream	Upstream Node:	S11	
Road:	R626	Inspected Length:	55.46 m	Upstream Pipe Depth:	1.250 m	
Location:	Road	Total Length:	55.46 m	Downstream Node:	S12	
Surface Type:	Asphalt Highway	Joint Length:	0.00 m	Downstream Pipe Depth:		
Use:	Surface water		Pipe Shape:	Circular	1.070 111	
Type of Pipe:	Gravity drain/sewer		Dia/Height:	600 mm		
Year Constructed:			Pipe Material:	Concrete		
Flow Control:	No flow control		Lining Type:	No Lining		
Inspection Purpose:	Sample survey to determine asset condition		Lining Material:	No Lining		

Comments: Recommendations:

Scale: 1:483 Position [m] Code Observation	MPEG	Photo	Grade
--	------	-------	-------

STR No. Def STR Peak	5 I R Mean	SIR Total	STR Grade	SER No. Def	SER Peak	SED Moon	CED Tatal	
								SER Grado
	0.0	0.0	4.0	-		· · · · · · · · · · · · · · · · ·	OLIT TOTAL	OLI Grade
0.0	0.0	0.0	1.0	0	0.0	0.0	0.0	1.0

Finish node type, manhole, reference number: S12

150mm

MHF

S12

Depth: 1.97 m

55.46

00:08:50

Tel. 021 - 4770797 info@munsterdrain.com

Section Pictures - 05/04/2019 - S11X

Section

Inspection Direction Downstream PLR S11X Client's Job Ref KM.04.19.67 Contractor's Job Ref

\$11X_bced69d4-79c0-4d55-a302-6040b96b55cc_20190405_ 160032_561.jpg, 00:07:57, 53.11 m Connection other than junction at 1 o'clock, diameter: 150mm

S11X_8c26414c-5570-4c5c-9c45-72a3d62b1144_20190405_ 155300_478.jpg, 00:00:53, 7.22 m Connection other than junction at 1 o'clock, diameter: 150mm

S11X_4159b65c-b355-45a4-92e8-229edce50242_20190405_ 160051_701.jpg, 00:08:06, 53.16 m Connection other than junction at 1 o'clock, diameter: 150mm

Tel. 021 - 4770797 info@munsterdrain.com

Ebe

Section Pictures - 05/04/2019 - S11X

Section Inspection Direction PLR Client's Job Ref Contractor's Job Ref
1 Downstream S11X KM.04.19.67

S11X_0c83f958-bcf9-481f-9fee-3e27b1badafb_20190405_16 0142_182.jpg, 00:08:50, 55.46 m Finish node type, manhole, reference number: S12

Tel. 021 - 4770797 info@munsterdrain.com

Section Inspection - 05/04/2019 - S12X

ection	Date	Time	Client's Job Ref	Weather No Rain Or Snow	Pre Cleaned Yes	PLR S12X
	Vehicle		Camera	Preset Length Not Specified	Legal Status Not Specified	Alternative ID Not Specified
	ection 1 av	1 05/04/19 Vehi	1 05/04/19 14:45 Vehicle	1 05/04/19 14:45 KM.04.19.67 Vehicle Camera	1 05/04/19 14:45 KM.04.19.67 No Rain Or Snow Vehicle Camera Preset Length	O5/04/19 14:45 KM.04.19.67 No Rain Or Snow Yes Vehicle Camera Preset Length Legal Status Not Specified

Town or Village: Road: Location: Surface Type:	Midleton R626 Road Asphalt Highway	Inspection Direction: Inspected Length: Total Length: Joint Length:	Downstream 68.87 m 68.87 m 0.00 m	Upstream Node: Upstream Pipe Depth: Downstream Node: Downstream Pipe Depth:	S12 1.970 m S13	
Use:	Surface water	•	Pipe Shape: Dia/Height:	Circular 600 mm		
Type of Pipe: Year Constructed:	Gravity drain/sewer		Pipe Material:	Material: Concrete g Type: No Lining		
Flow Control: Inspection Purpose:	No flow control Sample survey to de	etermine asset condition	Lining Type: Lining Material:			

Flow Co	ontrol: ion Purpos		No flow control Sample survey to determine asset condition No access to S13 for invert level			No Lining No Lining			
Comme	ents: mendations		S13 for in	vert level					
Scale:	1:599	Position [m]	Code	Observation			MPEG	Photo	Grade
	Depth: 1.97 S12	m							
		0.00	МН	Start node type, ma	nhole, reference numb	per: S12	00:00:00		
		1.65	WL	Water level, 10% of	the vertical dimension	1	00:00:12		
	0	2.84	CN	Connection other th	an junction at 12 o'clo	ck, diameter:	00:00:28		
		12.36	CN	Connection other th 150mm	an junction at 12 o'clo	ck, diameter:	00:04:18		
	0	27.79	CN	Connection other th 100mm	nan junction at 12 o'clo	ck, diameter:	00:06:39		
*									

STR No Def	STR Peak	STR Mean	STR Total	STR Grade	SER No. Def	SER Peak	SER Mean	SER Total	SER Grade
O I K NO. DOI	0.0	0.0	0.0	1.0	0	0.0	0.0	0.0	1.0
U	0.0	0.0	0.0						

Depth: m

Tel. 021 - 4770797 info@munsterdrain.com

Section Pictures - 05/04/2019 - S12X

Section 14

Inspection Direction Downstream

PLR S₁₂X Client's Job Ref KM.04.19.67

Contractor's Job Ref

\$12X_530986e0-6df5-4e9a-9f86-33bcdb7ea806_20190405_1 45505_405.jpg, 00:00:00, 0.00 m Start node type, manhole, reference number: \$12

45527_027.jpg, 00:00:12, 1.65 m Water level, 10% of the vertical dimension

S12X_c8a29280-971f-4478-a52d-44cf951e9945_20190405_1 45551_027.jpg, 00:00:28, 2.84 m
Connection other than junction at 12 o'clock, diameter:

S12X_1bd62a68-ad66-4de4-b315-8e019f14ab10_20190405_ 145952_710.jpg, 00:04:18, 12.36 m Connection other than junction at 12 o'clock, diameter:

S12X_7c569883-7420-47af-be2e-602fc3a58e52_20190405_1 50225_562.jpg, 00:06:39, 27.79 m Connection other than junction at 12 o'clock, diameter:

S12X 14a235e1-3da0-4edc-ba07-3a80a5ae47d2_20190405_ 150825_482.jpg, 00:11:35, 68.87 m Finish node type, manhole, reference number: S13

Tel. 021 - 4770797 info@munsterdrain.com

WinCan

Notes:

Thank you for choosing to use Munster Drain Services to carry out your drainage investigation works.

The results and views carried in this report are those of the engineer(s) appointed to carry out the investigation and are considered relevant on the day of the survey. Drain and sewer performance is known to alter over time, so liability cannot be accepted for differences between the recorded data and the actual data at a time after this report was generated.

This survey has been created in accordance with the drainage standard used in the country and language settings for this PC.

If a DVD has been supplied with this report, please note that it can only be used in a Windows based PC. Please browse the DVD and navigate to the PDF folder to find project-based documents such as drawings, engineer's site notes and survey specifications amongst others.

CCTV subsidence investigations do not account for the water tightness of the pipes and are merely a visual inspection of inside of the drains. CCTV drainage engineers are generally not qualified to comment on the causes of subsidence, and can only suggest required remedial actions for the pipes, and not the affected buildings.

Subsidence is a building structural failure, which can occur for many reasons. Although drainage failures can contribute to subsidence problems, other causes should always be investigated as part of a considered approach. In order to eliminate drains from suspicion, it is suggested that all pipes within at least 10m of the subsidence area be pressure tested over and above a CCTV inspection, and remedial suggestions considered based on the findings.

Unless otherwise specified in an associated task order (or similar), the data gathered in this report may not be suitable for use as a pre-lining investigation. Munster Drain are happy to carry out such surveys, but this must be agreed prior to the commencement of the works, and a the client must specify the data they wish to capture and the acceptable tolerances.

Where GPS coordinates and heights have been issued within this report, they are to 1m accuracy, and 2m accuracy for heights. Greater accuracy can be provided on request.

Tel. 021 - 4770797 info@munsterdrain.com

Project

Project Name: Broomfield Court, Midleton

Project Description: Surface Water CCTV Survey

Project Number: KM.04.19.67
Project Date: 05/04/2019

Project Standard: MSCC4 Sewers & Drainage GB (SRM4 Scoring)

Broomfield Court, Midleton Ver: 1.2019.4.12

Tel. 021 - 4770797 info@munsterdrain.com

Table of Contents

Project Name	Project Number	Project Date
Broomfield Court, Midleton	KM.04.19.67	05/04/2019

Project Information	P-1
Scoring Summary	P-2
Section Profile	P-3
Section Summary	P-4
Section: 2; S1 > S2 (S1X)	1
Section: 3; S2 > S3 (S2X)	3
Section: 5; S3 > S4 (S3X)	5
Section: 4; S4 > S5 (S4X)	7
Section: 6; S5 > S6 (S5X)	12
Section: 8; S5 > S6 (S5X)	15
Section: 7; S6 > S7 (S6X)	18
Section: 9; S7 > S8 (S7X)	23
Section: 10; S8 > S9 (S8X)	26
Section: 11; S8 > S9 (S8X)	28
Section: 12; S9 > S10 (S9X)	30
Section: 13; S10 > S11 (S10X)	32
Section: 1; S11 > S12 (S11X)	34
Section: 14; S12 > S13 (S12X)	37
WinCan	30

Tel. 021 - 4770797 info@munsterdrain.com

Project Information

Project NameProject NumberProject DateBroomfield Court, MidletonKM.04.19.6705/04/2019

Client

Company:

M.H.L Consulting Engineers

Contact:

Shane Moriarty

Contractor

Company:

Munster Drain Services

Contact:

Office

Phone:

021 - 4770797

Email:

info@munsterdrain.com

Tel. 021 - 4770797 info@munsterdrain.com

Scoring Summary

 Project Name
 Project Number
 Project Date

 Broomfield Court, Midleton
 KM.04.19.67
 05/04/2019

Structural Defects

- Grade 3: Best practice suggests consideration should be given to repairs in the medium term.
- Grade 4: Best practice suggests consideration should be given to repairs to avoid a potential collapse.
- Grade 5: Best practice suggests that this pipe is at risk of collapse at any time. Urgent consideration should be given to repairs to avoid total failure.

Section	PLR	Grade	Description
9	S7X	4	Fracture spiral from 9 o'clock to 3 o'clock

Service / Operational Condition

- Grade 3: Best practice suggests consideration should be given to maintenance activities in the medium term.
- Grade 4: Best practice suggests consideration should be given to maintenance activity to avoid potential blockages.
- Grade 5: Best practice suggests that this pipe is at a high risk of backing up or causing flooding.

Section	PLR	Grade	Description
6	S5X	5	Connection intruding at 1 o'clock, diameter: 100mm, intrusion: 95%
7	S6X	5	Connection intruding at 12 o'clock, diameter: 100mm, intrusion: 80%
8	S5X	5	Connection intruding at 11 o'clock, diameter: 100mm, intrusion: 95%

Abandoned Surveys

Section	PLR	Description
6	S5X	Survey abandoned
8	S5X	Survey abandoned
10	S8X	Survey abandoned
11	S8X	Survey abandoned

Information

These scoring summaries are based on the SRM grading from the WRc.

Tel. 021 - 4770797 info@munsterdrain.com

Section Profile

Project Name	Project Number	Project Date
Broomfield Court, Midleton	KM.04.19.67	05/04/2019

Circular, 450 mm									
Section	Upstream Node	Downstream Node	Date	Road	Pipe Material	Total Length	Inspected Length		
2	S1	S2	05/04/2019	Broomfield	Polyvinyl chloride	13.36 m	13.36 m		
3	S2	S3	05/04/2019	Avoncore Place	Polyvinyl chloride	34.89 m	34.89 m		
4	S4	S5	05/04/2019	Brookdale	Concrete	65.17 m	65.17 m		
5	S3	S4	05/04/2019	Brookdale	Polyvinyl chloride	14.68 m	14.68 m		

Total: 4 Inspections x Circular 450 mm = 128.10 m Total Length and 128.10 m Inspected Length

Circular, 600 mm

Section	Upstream Node	Downstream Node	Date	Road	Pipe Material	Total Length	Inspected Length
1	S11	S12	05/04/2019	R626	Concrete	55.46 m	55.46 m
7	S6	S7	05/04/2019	Brookdale	Concrete	61.18 m	61.18 m
9	S7	S8	05/04/2019	Avoncore Estate	Concrete	31.38 m	31.38 m
12	S9	S10	05/04/2019	Elm Grove	Concrete	9.92 m	9.92 m
13	S10	S11	05/04/2019	Avoncore Estate	Concrete	67.57 m	67.57 m
14	S12	S13	05/04/2019	R626	Concrete	68.87 m	68.87 m

Total: 6 Inspections x Circular 600 mm = 294.38 m Total Length and 294.38 m Inspected Length

Total: 10 Inspections = 422.48 m Total Length and 422.48 m Inspected Length

Tel. 021 - 4770797 info@munsterdrain.com

Section Summary

Project Name	Project Number	Project Date
Broomfield Court, Midleton	KM.04.19.67	05/04/2019

N	umber o	of section	ons		14		
Т	otal leng	gth of s	ewer network		588.62 m		
To	otal leng	gth of ir	nspections		588.62 m		
-	4-1 1		Cara dana a Carana de		0.00		
10	otal leng	jth of a	bandoned inspections		0.00 m		
Total abandoned inspections					4		
Number of section inspection photos					96		
N	umber c	of section	on inspection videos		14		
N	umber c	of section	on inspection scans		0		
N	umber o	of section	on inclination measurements		0		
PLR:			S1X	Upstream Node:	S1		
	ction Direc	tion:	Upstream	Downstream Node:	S2		
	cted Lengt		13.36 m	Dia/Height:	450 mm		
	Length:		13.36 m	Pipe Material:	Polyvinyl chloride		
No.	m+	Code	Observation	•			
1	0.00	МН	Start node type, manhole, reference num	ther: S2			
2	13.36	MHF	Finish node type, manhole, reference nur				
DI D			997				
PLR:	with breeze		S2X	Upstream Node:	S2		
1000	ction Direc		Downstream 34.89 m	Downstream Node:	S3		
A 10 To 10 T	cted Lengt Length:	n:	34.89 m	Dia/Height: Pipe Material:	450 mm Polyvinyl chloride		
No.	m+	Code	Observation	ripe material.	Polyvillyi Cilionae		
1			Start node type, manhole, reference num	han CO			
2	0.00	MH WL	Water level, 5% of the vertical dimension				
3	34.89	MHF	Finish node type, manhole, reference nui				
PLR:	W		S3X	Upstream Node:	S3		
College and	ction Direc		Upstream	Downstream Node:	S4		
	cted Lengt	n:	14.68 m	Dia/Height:	450 mm		
	Length:	Codo		Pipe Material:	Polyvinyl chloride		
No.	m+	Code	Observation				
1	0.00	MH	Start node type, manhole, reference num				
2	1.98	WL	Water level, 20% of the vertical dimension	n			
	12.99	GP	General photograph taken at this point				
3							

Tel. 021 - 4770797 info@munsterdrain.com

Section Summary

Project NameProject NumberProject DateBroomfield Court, MidletonKM.04.19.6705/04/2019

PLR:			S4X	Upstream Node:	S4	
	ction Direct	tion:	Upstream	Downstream Node:	S5	
MEAN AND	cted Length		65.17 m	Dia/Height:	450 mm	
	Length:		65.17 m	Pipe Material:	Concrete	
No.	m+	Code	Observation			
1	0.00	МН	Start node type, manhole, refe	rence number: S5		
2	0.59	CN	Connection other than junction	at 12 o'clock, diameter: 100mm		
3	4.16	CN	Connection other than junction	at 12 o'clock, diameter: 150mm		
4	8.54	CN	Connection other than junction	at 12 o'clock, diameter: 100mm		
5	16.53	CN	Connection other than junction	at 12 o'clock, diameter: 100mm		
6	22.05	CN	Connection other than junction	at 12 o'clock, diameter: 150mm		
7	24.68	CN	Connection other than junction	at 12 o'clock, diameter: 100mm		
8	32.38	CN	Connection other than junction	at 12 o'clock, diameter: 100mm		
9	36.31	CN	Connection other than junction	at 12 o'clock, diameter: 150mm		
10	38.59	CN	Connection other than junction	at 12 o'clock, diameter: 100mm		
11	46.36	CN	Connection other than junction	at 12 o'clock, diameter: 100mm		
12	49.34	CN	Connection other than junction	at 12 o'clock, diameter: 100mm		
13	58.93	CN	Connection other than junction	at 12 o'clock, diameter: 100mm		
14	61.19	CN	Connection other than junction	at 12 o'clock, diameter: 150mm		
15	64.09	CN	Connection other than junction	at 12 o'clock, diameter: 100mm		
16	65.17	MHF	Finish node type, manhole, ref	ference number: S4		F4 170
					0.5	
PLR:	ction Direc	tion	S5X Downstream	Upstream Node: Downstream Node:	S5 S6	
W. C.	cted Lengtl		51.90 m	Dia/Height:	450 mm	
	Length:		51.90 m	Pipe Material:	Concrete	
No.				A		
	m+	Code	Observation		1	
1	0.00	MH	Observation Start node type, manhole, reference	erence number: S5		
			Start node type, manhole, refe	erence number: S5 n at 12 o'clock, diameter: 100mm	1 con	
1	0.00	MH .	Start node type, manhole, refe Connection other than junction		Con	
1 2	0.00 4.83	MH _	Start node type, manhole, refe Connection other than junction Connection other than junction	at 12 o'clock, diameter: 100mm	Con	
1 2 3	0.00 4.83 17.03	MH _ CN	Start node type, manhole, refe Connection other than junction Connection other than junction Connection other than junction	n at 12 o'clock, diameter: 100mm n at 12 o'clock, diameter: 100mm	Con	
1 2 3 4	0.00 4.83 17.03 21.52	MH _ CN CN	Start node type, manhole, reference Connection other than junction Connection other than junction Connection other than junction Connection other than junction	n at 12 o'clock, diameter: 100mm n at 12 o'clock, diameter: 100mm n at 12 o'clock, diameter: 100mm	Con	
1 2 3 4 5	0.00 4.83 17.03 21.52 27.37	MH CN CN CN	Start node type, manhole, reference Connection other than junction	n at 12 o'clock, diameter: 100mm n at 12 o'clock, diameter: 100mm n at 12 o'clock, diameter: 100mm n at 12 o'clock, diameter: 100mm	Con	
1 2 3 4 5 6	0.00 4.83 17.03 21.52 27.37 34.29	MH _ CN CN CN CN	Start node type, manhole, reference Connection other than junction	n at 12 o'clock, diameter: 100mm	Con	
1 2 3 4 5 6 7	0.00 4.83 17.03 21.52 27.37 34.29 36.11	MH CN CN CN CN CN CN	Start node type, manhole, reference Connection other than junction	n at 12 o'clock, diameter: 100mm	Con	
1 2 3 4 5 6 7 8	0.00 4.83 17.03 21.52 27.37 34.29 36.11 41.03	MH CN CN CN CN CN CN CN	Start node type, manhole, reference Connection other than junction	n at 12 o'clock, diameter: 100mm	Con	
1 2 3 4 5 6 7 8	0.00 4.83 17.03 21.52 27.37 34.29 36.11 41.03 49.28	MH - CN CN CN CN CN CN CN CN	Start node type, manhole, reference Connection other than junction	n at 12 o'clock, diameter: 100mm n at 11 o'clock, diameter: 100mm n at 11 o'clock, diameter: 100mm	Con	
1 2 3 4 5 6 7 8 9 10	0.00 4.83 17.03 21.52 27.37 34.29 36.11 41.03 49.28 51.22	MH CN	Start node type, manhole, reference Connection other than junction Connection intruding at 1 o'closurvey abandoned	n at 12 o'clock, diameter: 100mm n at 11 o'clock, diameter: 100mm	C _O	
1 2 3 4 5 6 7 8 9 10 11	0.00 4.83 17.03 21.52 27.37 34.29 36.11 41.03 49.28 51.22	MH CN	Start node type, manhole, reference Connection other than junction Connection intruding at 1 o'clo	n at 12 o'clock, diameter: 100mm n at 11 o'clock, diameter: 100mm n at 11 o'clock, diameter: 100mm		
1 2 3 4 5 6 7 8 9 10 11 PLR: Inspec	0.00 4.83 17.03 21.52 27.37 34.29 36.11 41.03 49.28 51.22 51.90	MH CN CXI SA	Start node type, manhole, reference Connection other than junction Connection intruding at 1 o'cle Survey abandoned	n at 12 o'clock, diameter: 100mm n at 11 o'clock, diameter: 100mm n at 11 o'clock, diameter: 100mm n at 11 o'clock, diameter: 100mm ock, diameter: 100mm, intrusion: 95% Upstream Node:	S5	
1 2 3 4 5 6 7 8 9 10 11 PLR: Inspecting the special state of the special	0.00 4.83 17.03 21.52 27.37 34.29 36.11 41.03 49.28 51.22 51.90	MH CN CXI SA	Start node type, manhole, reference Connection other than junction Connection intruding at 1 o'clossurvey abandoned S5X Upstream	n at 12 o'clock, diameter: 100mm n at 11 o'clock, diameter: 100mm n at 11 o'clock, diameter: 100mm ock, diameter: 100mm, intrusion: 95% Upstream Node: Downstream Node:	S5 S6	
1 2 3 4 5 6 7 8 9 10 11 PLR: Inspecting the special state of the special	0.00 4.83 17.03 21.52 27.37 34.29 36.11 41.03 49.28 51.22 51.90 ction Directiced Length	MH CN CXI SA	Start node type, manhole, reference Connection other than junction Connection intruding at 1 o'closurvey abandoned S5X Upstream 14.70 m	n at 12 o'clock, diameter: 100mm n at 11 o'clock, diameter: 100mm n at 11 o'clock, diameter: 100mm ock, diameter: 100mm, intrusion: 95% Upstream Node: Downstream Node: Dia/Height:	S5 S6 450 mm	

Tel. 021 - 4770797 info@munsterdrain.com

Section Summary

Project NameProject NumberProject DateBroomfield Court, MidletonKM.04.19.6705/04/2019

No.	m+	Code	Observation			
2	0.42	CN	Connection other than junction at 2	2 o'clock, diameter: 100mm		
3	0.84	CXI	Connection intruding at 2 o'clock, o	Connection intruding at 2 o'clock, diameter: 100mm, intrusion: 20%		
4	1.73	CXI	Connection intruding at 12 o'clock, diameter: 100mm, intrusion: 25%			
5	4.75	CN	Connection other than junction at 1 o'clock, diameter: 100mm			
6	8.40	CN	Connection other than junction at 2	2 o'clock, diameter: 100mm		
7	14.23	CXI	Connection intruding at 11 o'clock,	diameter: 100mm, intrusion: 95	%	
8	14.70	SA	Survey abandoned			
PLR:			S6X	Upstream Node:	S6	
nspe	ction Direc	tion:	Downstream	Downstream Node:	S7	
	ted Lengt	h:	61.18 m	Dia/Height:	600 mm	
	Length:		61.18 m	Pipe Material:	Concrete	
No.	m+	Code	Observation			
1	0.00	MH	Start node type, manhole, reference	e number: S6		
2	4.14	CN	Connection other than junction at 1	2 o'clock, diameter: 100mm		
3	4.39	CN	Connection other than junction at 1	2 o'clock, diameter: 100mm		
4	14.22	CN	Connection other than junction at 1	2 o'clock, diameter: 100mm		
5	14.77	CN	Connection other than junction at 12 o'clock, diameter: 100mm			
6	18.16	CN	Connection other than junction at 11 o'clock, diameter: 100mm			
7	18.17	CN	Connection other than junction at 12 o'clock, diameter: 100mm			
8	27.51	CN	Connection other than junction at 12 o'clock, diameter: 100mm			
9	27.62	CN	Connection other than junction at 1	2 o'clock, diameter: 100mm		
10	32.56	CN	Connection other than junction at 1	2 o'clock, diameter: 100mm		
11	34.61	CN	Connection other than junction at 1	2 o'clock, diameter: 100mm		
12	41.57	CN	Connection other than junction at 1	2 o'clock, diameter: 100mm		
13	42.14	CN	Connection other than junction at 1	2 o'clock, diameter: 100mm		
14	48.17	CXI	Connection intruding at 12 o'clock,	diameter: 100mm, intrusion: 200	%	
15	52.98	CXI	Connection intruding at 12 o'clock,	diameter: 100mm, intrusion: 80°	%	
16	53.79	CXI	Connection intruding at 12 o'clock,	diameter: 100mm, intrusion: 500	%	
17	58.07	CN	Connection other than junction at 1	2 o'clock, diameter: 100mm		
18	61.18	MHF	Finish node type, manhole, referen	ice number: S7		
PLR:			S7X	Upstream Node:	S7	
nspe	tion Direc	tion:	Downstream	Downstream Node:	S8	
	ted Lengt	n:	31.38 m	Dia/Height:	600 mm	
	Length:	Codo	31.38 m	Pipe Material:	Concrete	
No.	m+	Code	Observation	a number C7		
1	0.00	MH	Start node type, manhole, reference			
2	0.00	GP	General photograph taken at this p			
3	0.00	CM	Cracks, multiple from 4 o'clock to 6			
4	0.00	FS	Fracture spiral from 9 o'clock to 3 o			
5	0.07	GP	General photograph taken at this p			
6	0.07	SRB	Sealing ring broken from 3 o'clock	to 9 o'clock		
7	0.37	CS	Cracks, spiral from 12 o'clock to 12	2 o'clock		

Tel. 021 - 4770797 info@munsterdrain.com

Section Summary

Project Name	Project Number	Project Date
Broomfield Court, Midleton	KM.04.19.67	05/04/2019

No.	m+	Code	Observation				
8	1.34	CN	Connection other than junction	Connection other than junction at 12 o'clock, diameter: 100mm			
9	3.48	GP	General photograph taken at the	nis point			
10	5.72	CN	Connection other than junction	at 1 o'clock, diameter: 100mm	(CEASING CO.)		
11	21.87	CN	Connection other than junction	Connection other than junction at 12 o'clock, diameter: 100mm			
12	31.38	MHF	Finish node type, manhole, ref	erence number: S8			
PLR:	ryan en e		S8X	Upstream Node:	S8		
Inspec	tion Direc	tion:	Downstream	Downstream Node:	S9		
Inspec	ted Lengt	h:	78.81 m	Dia/Height:	600 mm		
Total L	ength:		78.81 m	Pipe Material:	Concrete		
No.	m+	Code	Observation				
1	0.00	МН	Start node type, manhole, refe	rence number: S8			
2	78.81	SA	Survey abandoned				
PLR:			S8X	Upstream Node:	S8		
	tion Direc	tion:	Upstream	Downstream Node:	S9		
THE PARTY OF	ted Lengt		20.73 m	Dia/Height:	600 mm		
Total L			20.73 m	Pipe Material:	Concrete		
No.	m+	Code	Observation				
1	0.00	МН	Start node type, manhole, refe	rence number: S9			
2	20.73	SA	Survey abandoned				
PLR:			S9X	Upstream Node:			
	tion Direc	tion:	Downstream	Downstream Node:			
1000	ted Lengt		9.92 m	Dia/Height:			
Total L	ength:		9.92 m	Pipe Material:			
No.	m+	Code	Observation				
1	0.00	МН	Start node type, manhole, refe	rence number: S9			
2	9.92	MHF	Finish node type, manhole, ref	erence number: S10			
PLR:			S10X	Upstream Node:			
	tion Direc	tion:	Downstream	Downstream Node:			
The state of the s	ted Lengt		67.57 m	Dia/Height:			
	ength:		67.57 m	Pipe Material:			
No.	m+	Code	Observation				
1	0.00	МН	Start node type, manhole, refe				
2	61.26	WL	Water level, 10% of the vertical	al dimension			
3	67.57	MHF	Finish node type, manhole, ref	erence number: S11			
PLR:			S11X	Upstream Node:	S11		
	tion Direc		Downstream	Downstream Node:	S12		
1	ted Lengt	h:	55.46 m	Dia/Height:	600 mm		
Total L	ength:		55.46 m	Pipe Material:	Concrete		
No.	m+	Code	Observation				
1	0.00	МН	Start node type, manhole, refe				
-		CN	Connection other than junction	at 1 o'clock, diameter: 150mm			
2	7.22	CIV	Confection other than junious				

Tel. 021 - 4770797 info@munsterdrain.com

Section Summary

Project Name	Project Number	Project Date
Broomfield Court, Midleton	KM.04.19.67	05/04/2019

No.	m+	Code	Observation			
4	30.84	CN	Connection other than junction at 1	o'clock, diameter: 150mm	7117	
5	53.11	CN	Connection other than junction at 1	o'clock, diameter: 150mm		
6	53.16	CN	Connection other than junction at 1 o'clock, diameter: 150mm			
7	55.46	MHF	Finish node type, manhole, referen	ce number: S12		
PLR:			S12X	Upstream Node:	S12	
nspec	tion Direc	tion:	Downstream	Downstream Node:	S13	
Inspec	ted Lengt	h:	68.87 m	Dia/Height:	600 mm	
Total L	ength:		68.87 m	Pipe Material:	Concrete	
No.	m+	Code	Observation			
1	0.00	МН	Start node type, manhole, reference	e number: S12		
2	1.65	WL	Water level, 10% of the vertical dim	nension		
3	2.84	CN	Connection other than junction at 1.	2 o'clock, diameter: 150mm		
4	12.36	CN	Connection other than junction at 1.	2 o'clock, diameter: 150mm		
5	27.79	CN	Connection other than junction at 1	2 o'clock, diameter: 100mm		
6	68.87	MHF	Finish node type, manhole, reference	ce number: S13		

Tel. 021 - 4770797 info@munsterdrain.com

Section Inspection - 05/04/2019 - S1X

				1. 0			
Section 2	Inspection 1	Date 05/04/19	Time 7:05	Client's Job Ref KM.04.19.67	Weather No Rain Or Snow	Pre Cleaned Yes	PLR S1X
	erator th Murray	Vehi		Camera Mini-Cam	Preset Length Not Specified	Legal Status Not Specified	Alternative ID Not Specified

Town or Village:	Midleton	Inspection Direction:	Upstream	Upstream Node:	S1
Road:	Broomfield	Inspected Length:	13.36 m	Upstream Pipe Depth:	3.150 m
Location:	Road	Total Length:	13.36 m	Downstream Node:	S2
Surface Type:	Asphalt Highway	Joint Length:	0.00 m	Downstream Pipe Depth:	3.330 m
Use:	Surface water		Pipe Shape:	Circular	
Type of Pipe:	Gravity drain/sewer		Dia/Height:	450 mm	
Year Constructed:			Pipe Material:	Polyvinyl chloride	
Flow Control:	No flow control		Lining Type:	No Lining	
Inspection Purpose:	Sample survey to dete	ermine asset condition	Lining Material:	No Lining	

Comments:

Recommendations:

MPEG Photo Grade Scale: 1:117 Position [m] Code Observation

Depth: 3.33 m

S2

00:00:00 0.00 MH Start node type, manhole, reference number: S2

13.36

Finish node type, manhole, reference number: S1

00:01:26

Depth: 3.15 m

Tel. 021 - 4770797 info@munsterdrain.com

Section Pictures - 05/04/2019 - S1X

Section	Inspection Direction	PLR	Client's Job Ref	Contractor's Job Ref
2	Upstream	S1X	KM.04.19.67	

S1X_fb6e0b6d-9bc2-4073-a808-d941a78430c0_20190405_0 72359_148.jpg, 00:00:00, 0.00 m Start node type, manhole, reference number: S2

S1X_ca35267c-2005-4aaa-a9e6-63c0758e75ec_20190405_0 72534_741.jpg, 00:01:26, 13.36 m Finish node type, manhole, reference number: S1

Tel. 021 - 4770797 info@munsterdrain.com

Section Inspection - 05/04/2019 - S2X

Section 3	Inspection 1	Date 05/04/19	Time 7:28	Client's Job Ref KM.04.19.67	Weather No Rain Or Snow	Pre Cleaned Yes	PLR S2X
1 1	erator th Murray	Vehi 14		Camera Mini-Cam	Preset Length Not Specified	Legal Status Not Specified	Alternative ID Not Specified

Town or Village:	Midleton	Inspection Direction:	Downstream	Upstream Node:	S2
Road:	Avoncore Place	Inspected Length:	34.89 m	Upstream Pipe Depth:	3.330 m
Location:	Road	Total Length:	34.89 m	Downstream Node:	S3
Surface Type:	Asphalt Highway	Joint Length:	0.00 m	Downstream Pipe Depth:	2.565 m
Use:	Surface water		Pipe Shape:	Circular	
Type of Pipe:	Gravity drain/sewer		Dia/Height:	450 mm	
Year Constructed:			Pipe Material:	Polyvinyl chloride	
Flow Control:	No flow control		Lining Type:	No Lining	
Inspection Purpose:	Sample survey to dete	ermine asset condition	Lining Material:	No Lining	

Comments:

Recommendations:

Scale: 1:304 Position [m] Code Observation MPEG Photo Grade

Depth: 3.33 m
S2

0.00 MH Start node type, manhole, reference number: S2 00:00:00

14.35

WL Water level, 5% of the vertical dimensi

34.89 MHF Finish node type, manhole, reference to

Depth: 2.57 m

Tel. 021 - 4770797 info@munsterdrain.com

Section Pictures - 05/04/2019 - S2X

Section	Inspection Direction	PLR	Client's Job Ref	Contractor's Job Ref
3	Downstream	S2X	KM.04.19.67	

S2X_2608f175-6544-4e1c-a755-5bcd4680625b_20190405_0 72911_710.jpg, 00:00:00, 0.00 m Start node type, manhole, reference number: S2

S2X_3c24dd86-e9c2-4854-a02e-26cc4f794fcc_20190405_07 3041_501.jpg, 00:01:20, 14.35 m Water level, 5% of the vertical dimension

S2X_145dd4f1-9c8c-4397-98e5-7cbd74295ccd_20190405_0 73325_858.jpg, 00:03:29, 34.89 m Finish node type, manhole, reference number: S3

Position [m]

Munster Drain Services

MPEG

Photo

Grade

Tel. 021 - 4770797 info@munsterdrain.com

Section Inspection - 05/04/2019 - S3X

Section	Inspection	Date 05/04/19	Time 8:14	Client's Job Ref KM.04.19.67	Weather No Rain Or Snow	Pre Cleaned Yes	PLR S3X
	erator th Murray	Vehi	icle	Camera Mini-Cam	Preset Length Not Specified	Legal Status Not Specified	Alternative ID Not Specified

Town or Village:	Midleton	Inspection Direction:	Upstream	Upstream Node:	S3
Road:	Brookdale	Inspected Length:	14.68 m	Upstream Pipe Depth:	2.565 m
Location:	Road	Total Length:	14.68 m	Downstream Node:	S4
Surface Type:	Asphalt Highway	Joint Length:	0.00 m	Downstream Pipe Depth:	2.050 m
Use:	Surface water		Pipe Shape:	Circular	
Type of Pipe:	Gravity drain/sewer		Dia/Height:	450 mm	
Year Constructed:			Pipe Material:	Polyvinyl chloride	
Flow Control:	No flow control		Lining Type:	No Lining	
Inspection Purpose:	Sample survey to de	termine asset condition	Lining Material:	No Lining	

Comments:

Scale: 1:128

Recommendations:

Depth: 2.05 S4	m			
\bigcirc	0.00	МН	Start node type, manhole, reference number: S4	00:00:00
	1.98	WL	Water level, 20% of the vertical dimension: due to concrete	00:00:51

Code Observation

STR No. Def	STR Peak	STR Mean	STR Total	STR Grade	SER No. Def	SER Peak	SER Mean	SER Total	SER Grade
0	0.0	0.0	0.0	1.0	0	0.0	0.0	0.0	1.0

Tel. 021 - 4770797 info@munsterdrain.com

Section Pictures - 05/04/2019 - S3X

Section Inspection Direction PLR Client's Job Ref Contractor's Job Ref
5 Upstream S3X KM.04.19.67

\$3X_9e923133-f59a-4261-918a-f2247a8f9391_20190405_08 1548_768.jpg, 00:00:00, 0.00 m Start node type, manhole, reference number: \$4

S3X_e1f5476d-f88c-4819-a01c-ac833c89ea8f_20190405_08 2226_733.jpg, 00:05:56, 12.99 m General photograph taken at this point

S3X_51ac9785-3074-40fa-9406-ab5ca25e2d2c_20190405_0 81701_604.jpg, 00:00:51, 1.98 m Water level, 20% of the vertical dimension

\$3X_3154a530-4788-4cb9-9b2f-c8e0ef97cbe9_20190405_08 2323_160.jpg, 00:06:46, 14.68 m Finish node type, manhole, reference number: \$3

Tel. 021 - 4770797 info@munsterdrain.com

Section Inspection - 05/04/2019 - S4X

				The second secon			
Section 4	Inspection 1	Date 05/04/19	Time 8:01	Client's Job Ref KM.04.19.67	Weather No Rain Or Snow	Pre Cleaned Yes	PLR S4X
	erator th Murray	Vehi 14	17.17	Camera Mini-Cam	Preset Length Not Specified	Legal Status Not Specified	Alternative ID Not Specified

Town or Village:	Midleton	Inspection Direction:	Upstream	Upstream Node:	S4
Road:	Brookdale	Inspected Length:	65.17 m	Upstream Pipe Depth:	2.050 m
Location:	Road	Total Length:	65.17 m	Downstream Node:	S5
Surface Type:	Asphalt Highway	Joint Length:	0.00 m	Downstream Pipe Depth:	2.630 m
Use:	Surface water		Pipe Shape:	Circular	
Type of Pipe:	Gravity drain/sewer		Dia/Height:	450 mm	
Year Constructed:			Pipe Material:	Concrete	
Flow Control:	No flow control	No flow control		No Lining	
Inspection Purpose:	Sample survey to de	Sample survey to determine asset condition		No Lining	

Comments:

COIIIII	nendatio	ns:					
ale:	1:562	Position [m]	Code	Observation	MPEG	Photo	Grade
De	epth: 2.6	63 m 0.00	МН	Start node type, manhole, reference number: S5	00:00:00		
(35	0.59	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:00:11		
	1	4.16	CN	Connection other than junction at 12 o'clock, diameter: 150mm	00:00:38	1	
	0	8.54	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:01:12	Pan	***
	0	16.53	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:02:01	74	20
	0	22.05	CN	Connection other than junction at 12 o'clock, diameter: 150mm	00:02:52	25011	×
		24.68	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:03:25	25 VU	2019
	0	32.38	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:04:12	1/4/	40011
	0	36.31	CN	Connection other than junction at 12 o'clock, diameter: 150mm	00:04:43	The state of the s	
		38.59	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:05:11		V
	0	46.36	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:05:59		
		49.34	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:06:25		
	0	58.93	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:07:39		
		61.19	CN	Connection other than junction at 12 o'clock, diameter: 150mm	00:08:11		
		64.09	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:08:39		

Tel. 021 - 4770797 info@munsterdrain.com

Section Inspection - 05/04/2019 - S4X

Section	Inspection	5 Date 05/04/19		Client's Job Ref	Weather	Pre Cleaned	PLR
4	1			KM.04.19.67	No Rain Or Snow	Yes	S4X
	erator th Murray	Vehi 14		Camera Mini-Cam	Preset Length Not Specified	Legal Status Not Specified	Alternative ID Not Specified

Scale: Position [m] Code Observation
65.17 MHF Finish node type, manhole, reference number: S4

MPEG Photo Grade 00:08:55

Depth: 2.05 m

MUNSTER DRAIN SERVICES Ballingarry, Belgooly, Co. Cork

Tel. 021 - 4770797 info@munsterdrain.com

Section Pictures - 05/04/2019 - S4X

Section Inspection Direction
4 Upstream

PLR S4X Client's Job Ref KM.04.19.67 Contractor's Job Ref

S4X_6b0fc3f3-69d8-4222-817c-d3ec9f1d921d_20190405_08 0239_607.jpg, 00:00:00, 0.00 m Start node type, manhole, reference number: S5

S4X_6021ae2c-959a-4f2c-99e0-d2c84a075fe2_20190405_08 0341_009.jpg, 00:00:38, 4.16 m Connection other than junction at 12 o'clock, diameter:

S4X_0a309ee2-7cfd-4233-bd52-868781fad4a2_20190405_08 0558_786.jpg, 00:02:01, 16.53 m Connection other than junction at 12 o'clock, diameter:

S4X_a5e9ed2b-8f8f-494b-b06d-fe2155b6fd24_20190405_080 304_982.jpg, 00:00:11, 0.59 m Connection other than junction at 12 o'clock, diameter:

S4X_802735c8-86e0-42c0-8b8c-a67a50e5e5f3_20190405_0 80501_375.jpg, 00:01:12, 8.54 m Connection other than junction at 12 o'clock, diameter:

S4X_054fcaef-7066-4d99-b900-6afa1e02cb72_20190405_08 0704_434.jpg, 00:02:52, 22.05 m Connection other than junction at 12 o'clock, diameter:

Tel. 021 - 4770797 info@munsterdrain.com

Section Pictures - 05/04/2019 - S4X

S4X

Inspection Direction Section Upstream

PLR Client's Job Ref KM.04.19.67

Contractor's Job Ref

S4X_f6729a63-531b-46b9-9aaf-873fb425f930 20190405 080 740_702.jpg, 00:03:25, 24.68 m Connection other than junction at 12 o'clock, diameter:

S4X_8113a11a-517e-4edd-8ac4-bde4a3698e20_20190405_0 80913_677.jpg, 00:04:43, 36.31 m Connection other than junction at 12 o'clock, diameter:

S4X_1c539c1b-af17-430a-a122-eb39745caf70_20190405_08 1045_894.jpg, 00:05:59, 46.36 m Connection other than junction at 12 o'clock, diameter:

S4X_4dd6337d-9aba-4882-aa9d-5cf20b35e773_20190405_0 80834_359.jpg, 00:04:12, 32.38 m Connection other than junction at 12 o'clock, diameter:

S4X_b34d13cd-a11f-4f5a-83bd-292a71613fec_20190405_08 0949_148.jpg, 00:05:11, 38.59 m Connection other than junction at 12 o'clock, diameter:

S4X_70a28ef5-6797-4dd6-b806-d4c54aea946f 20190405 08 1119_111.jpg, 00:06:25, 49.34 m Connection other than junction at 12 o'clock, diameter:

Tel. 021 - 4770797 info@munsterdrain.com

Section Pictures - 05/04/2019 - S4X

 Section
 Inspection Direction
 PLR
 Client's Job Ref
 Contractor's Job Ref

 4
 Upstream
 S4X
 KM.04.19.67

S4X_0e1e6e37-3caa-43e9-b2cf-042f1139d628_20190405_08 1240_534.jpg, 00:07:39, 58.93 m Connection other than junction at 12 o'clock, diameter:

S4X_a38e43f0-4d8b-475b-90dc-9483a57644e7_20190405_0 81355_262.jpg, 00:08:39, 64.09 m Connection other than junction at 12 o'clock, diameter:

S4X_bb89ef55-97ee-4461-8fa9-05e0bdeb471d_20190405_08 1415_982.jpg, 00:08:55, 65.17 m Finish node type, manhole, reference number: S4

Tel. 021 - 4770797 info@munsterdrain.com

Section Inspection - 05/04/2019 - S5X

Section	Inspection	Date 05/04/19	Time	Client's Job Ref	Weather	Pre Cleaned	PLR
6	1		8:31	KM.04.19.67	No Rain Or Snow	Yes	S5X
	erator h Murray	Vehi 14		Camera Mini-Cam	Preset Length Not Specified	Legal Status Not Specified	Alternative ID Not Specified

Town or Village:	Midleton	Inspection Direction:	Downstream	Upstream Node:	S5
Road:	Brookdale	Inspected Length:	51.90 m	Upstream Pipe Depth:	2.630 m
Location:	Road	Total Length:	51.90 m	Downstream Node:	S6
Surface Type:	Asphalt Highway	Joint Length:	0.00 m	Downstream Pipe Depth:	2.330 m
Use:	Surface water		Pipe Shape:	Circular	
Type of Pipe:	Gravity drain/sewer		Dia/Height:	450 mm	
Year Constructed:			Pipe Material:	Concrete	
Flow Control:	No flow control		Lining Type:	No Lining	
Inspection Purpose:	Sample survey to dete	ermine asset condition	Lining Material:	No Lining	

Comments:

Recommendations:

cale: 1:452	Position [m]	Code	Observation	MPEG	Photo	Grade
Depth: 2.	.63 m					
	0.00	МН	Start node type, manhole, reference number: S5	00:00:00		
0	4.83	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:00:30		
0	17.03	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:03:01		
0	21.52	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:03:30		
•	27.37	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:04:08		
0	34.29	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:04:51		
	36.11	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:05:12		
	41.03	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:05:45		
	49.28	CN	Connection other than junction at 11 o'clock, diameter: 100mm	00:06:34		
	51.22	CXI	Connection intruding at 1 o'clock, diameter: 100mm, intrusion: 95%	00:06:56		5
	51.90	SA	Survey abandoned: can not pass intrusion	00:07:24		

STR Total STR Grade SER No. Def SER Peak

1.0

STR No. Def STR Peak

0.0

STR Mean

0.0

0.0

5.0

SER Total SER Grade

10.0

SER Mean

0.2

10.0

MUNSTER DRAIN SERVICES Ballingarry, Belgooly, Co. Cork

Tel. 021 - 4770797 info@munsterdrain.com

Section Pictures - 05/04/2019 - S5X

 Section
 Inspection Direction
 PLR
 Client's Job Ref
 Contractor's Job Ref

 6
 Downstream
 S5X
 KM.04.19.67

S5X_3a8da4cf-5542-444f-a34e-e58f58df49c0_20190405_090 223_838.jpg, 00:00:00, 0.00 m Start node type, manhole, reference number: S5

S5X_bd0ee04a-35e7-4a44-b67f-3794dc58536d_20190405_0 90545_028.jpg, 00:03:01, 17.03 m Connection other than junction at 12 o'clock, diameter:

S5X_e997d85e-513a-4c9e-a330-d3a995be0e1e_20190405_0 90707_939.jpg, 00:04:08, 27.37 m Connection other than junction at 12 o'clock, diameter:

S5X_693240fd-ed56-427d-b066-fe6b68a06725_20190405_09 0306_660.jpg, 00:00:30, 4.83 m Connection other than junction at 12 o'clock, diameter:

S5X_4b0726a5-1b8e-4719-8026-5574e0baccf4_20190405_0 90622_341.jpg, 00:03:30, 21.52 m Connection other than junction at 12 o'clock, diameter:

S5X_dc88f43e-10f2-439f-90a0-45b58179b8de_20190405_09 0759_213.jpg, 00:04:51, 34.29 m Connection other than junction at 12 o'clock, diameter:

Tel. 021 - 4770797 info@munsterdrain.com

Section Pictures - 05/04/2019 - S5X

Section Inspection Direction PLR Client's Job Ref Contractor's Job Ref Downstream S5X KM.04.19.67

S5X_b30b547f-62c6-437a-8a7e-d78a072d496e_20190405_0 90834_506.jpg, 00:05:12, 36.11 m Connection other than junction at 12 o'clock, diameter:

S5X_5188388e-7b81-4df1-9aaa-194757a45e84_20190405_0 91014_963.jpg, 00:06:34, 49.28 m Connection other than junction at 11 o'clock, diameter:

S5X_56b9a2bb-9e90-4269-8e9d-ab53078964d4_20190405_0 91158_715.jpg, 00:07:24, 51.90 m Survey abandoned

S5X_a2af812d-00a0-49d5-82f5-9c2578d3b00a_20190405_09 0914_929.jpg, 00:05:45, 41.03 m Connection other than junction at 12 o'clock, diameter:

S5X_d9c04386-cfdb-4432-a2e0-6620da3a2084_20190405_0 91108_192.jpg, 00:06:56, 51.22 m Connection intruding at 1 o'clock, diameter: 100mm, intrusion:

Tel. 021 - 4770797 info@munsterdrain.com

Section Inspection - 05/04/2019 - S5X

Section 8	Inspection 1	Date 05/04/19	Time 9:38	Client's Job Ref KM.04.19.67	Weather No Rain Or Snow	Pre Cleaned Yes	PLR S5X
	erator h Murray	Vehi 14		Camera Mini-Cam	Preset Length Not Specified	Legal Status Not Specified	Alternative ID Not Specified

Town or Village:	Midleton	Inspection Direction:	Upstream	Upstream Node:	S5
Road:	Brookdale	Inspected Length:	14.70 m	Upstream Pipe Depth:	2.630 m
Location:	Road	Total Length:	14.70 m	Downstream Node:	S6
Surface Type:	Asphalt Highway	Joint Length:	0.00 m	Downstream Pipe Depth:	2.330 m
Use:	Surface water		Pipe Shape:	Circular	
Type of Pipe:	Gravity drain/sewer		Dia/Height:	450 mm	
Year Constructed:			Pipe Material:	Concrete	
Flow Control:	No flow control		Lining Type:	No Lining	
Inspection Purpose:	Sample survey to det	ermine asset condition	Lining Material:	No Lining	

Comments: Recommendations:

cale: 1:128	Position [m]	Code	Observation	MPEG	Photo	Grade
Depth: 2.	.33 m					
	0.00	МН	Start node type, manhole, reference number: S6	00:00:00		
1	0.42	CN	Connection other than junction at 2 o'clock, diameter: 100mm	00:00:14		
	0.84	CXI	Connection intruding at 2 o'clock, diameter: 100mm, intrusion: 20%	00:00:28		3
	1.73	CXI	Connection intruding at 12 o'clock, diameter: 100mm, intrusion: 25%	00:00:43	1	4
	4.75	CN	Connection other than junction at 1 o'clock, diameter: 100mm	00:01:18	OR THE STATE OF TH	
	8.40	CN	Connection other than junction at 2 o'clock, diameter: 100mm	00:01:52	Poro	
	14.23	CXI	Connection intruding at 11 o'clock, diameter: 100mm,	00:02:36		5
			intrusion: 95%			
	14.70	SA	Survey abandoned: Survey Complete	00:02:45		

STR No. Def	STR Peak	STR Mean	STR Total	STR Grade	SER No. Def	SER Peak	SER Mean	SER Total	SER Grade
0	0.0	0.0	0.0	1.0	3	10.0	1.2	17.0	5.0

Tel. 021 - 4770797 info@munsterdrain.com

Section Pictures - 05/04/2019 - S5X

Section Inspection Direction PLR Client's Job Ref Contractor's Job Ref Upstream S5X KM.04.19.67

S5X_104bc7a0-720a-47f0-9d37-14bde05d9d88_20190405_0 93909_790.jpg, 00:00:00, 0.00 m Start node type, manhole, reference number: S6

S5X_b7966323-76b6-459a-b1e1-98e9956461e4_20190405_0 94005_065.jpg, 00:00:28, 0.84 m Connection intruding at 2 o'clock, diameter: 100mm, intrusion:

S5X_370e06e4-84f4-4c8a-a3a3-c44a2989c107_20190405_0 94118_654.jpg, 00:01:18, 4.75 m Connection other than junction at 1 o'clock, diameter: 100mm

S5X_03b0457f-bb8e-468f-9713-1786b92e3fda_20190405_09 3935_556.jpg, 00:00:14, 0.42 m Connection other than junction at 2 o'clock, diameter: 100mm

S5X_62aa0cc2-107c-47cd-adfc-3f77a6d3f8cb_20190405_094 031_971.jpg, 00:00:43, 1.73 m Connection intruding at 12 o'clock, diameter: 100mm,

S5X_acceb949-f9b9-48f2-85ef-1e599e766fc5_20190405_094 202_125.jpg, 00:01:52, 8.40 m Connection other than junction at 2 o'clock, diameter: 100mm

Tel. 021 - 4770797 info@munsterdrain.com

Section Pictures - 05/04/2019 - S5X

SectionInspection DirectionPLRClient's Job RefContractor's Job Ref8UpstreamS5XKM.04.19.67

\$5X_1b0d48cc-b4e9-416a-a0f1-9fd0bb0d32b9_20190405_09 4303_328.jpg, 00:02:36, 14.23 m Connection intruding at 11 o'clock, diameter: 100mm,

S5X_1d400da9-4a1b-4c68-8818-be19158c9803_20190405_0 94328_528.jpg, 00:02:45, 14.70 m Survey abandoned

Tel. 021 - 4770797 info@munsterdrain.com

Section Inspection - 05/04/2019 - S6X

Section 7	Inspection 1	Date 05/04/19	Time 9:24	Client's Job Ref KM.04.19.67	Weather No Rain Or Snow	Pre Cleaned Yes	PLR S6X
	erator h Murray	Vehi 14		Camera Mini-Cam	Preset Length Not Specified	Legal Status Not Specified	Alternative ID Not Specified

Town or Village:	Midleton	Inspection Direction:	Downstream	Upstream Node:	S6	
Road:	Brookdale	Inspected Length:	61.18 m	Upstream Pipe Depth:	2.330 m	
Location:	Road	Total Length:	61.18 m	Downstream Node:	S7	
Surface Type:	Asphalt Highway	Joint Length:	0.00 m	Downstream Pipe Depth:	2.800 m	
Use:	Surface water		Pipe Shape:	Circular		
Type of Pipe:	Gravity drain/sewer		Dia/Height:	600 mm		
Year Constructed:			Pipe Material:	Concrete		
Flow Control:	ow Control: No flow control			No Lining		
nspection Purpose: Sample survey to determine asset condition			Lining Material:	No Lining		

Comments: Recommendations:

Scale:	1:465	Position [m]	Code	Observation	MPEG	Photo	Grade
	Depth: 2.3	33 m 0.00	МН	Start node type, manhole, reference number: S6	00:00:00		
	30	4.14	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:00:39		
	0	4.39	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:00:46		
		14.22	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:01:54		
	8	14.77	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:02:07		
	oZ	18.16	CN	Connection other than junction at 11 o'clock, diameter: 100mm	00:02:37		
		18.17	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:02:43		
•	0	27.51	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:03:41		
	0	27.62	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:03:47		
		32.56	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:04:20		
	8	34.61	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:04:39		
		41.57	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:05:23		
		42.14	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:05:35		
	D	48.17	CXI	Connection intruding at 12 o'clock, diameter: 100mm, intrusion: 20%	00:06:23		3
		52.98	CXI	Connection intruding at 12 o'clock, diameter: 100mm, intrusion: 80%	00:07:02		5

Tel. 021 - 4770797 info@munsterdrain.com

Section Inspection - 05/04/2019 - S6X

Section 7	Inspection 1	Date 05/04/19	Time 9:24	Client's Job Ref KM.04.19.67	Weather No Rain Or Snow	Pre Cleaned Yes	PLR S6X
	erator h Murray	Vehi 14	7.17	Camera Mini-Cam	Preset Length Not Specified	Legal Status Not Specified	Alternative ID Not Specified

Scale:	1:465	Position [m]	Code	Observation	MPEG	Photo	Grade
		53.79	CXI	Connection intruding at 12 o'clock, diameter: 100mm, intrusion; 50%	00:07:32		4
1		58.07	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:08:05		
	S7	61.18	MHF	Finish node type, manhole, reference number: S7	00:08:30		

STR No. Def	STR Peak	STR Mean	STR Total	STR Grade	SER No. Def	SER Peak	SER Mean	SER Total	SER Grade
0	0.0	0.0	0.0	1.0	3	10.0	0.3	17.0	5.0

Broomfield Court, Midleton

Tel. 021 - 4770797 info@munsterdrain.com

Section Pictures - 05/04/2019 - S6X

Section	Inspection Direction	PLR	Client's Job Ref	Contractor's Job Ref
7	Downstream	S6X	KM.04.19.67	

S6X_8127d366-a7dc-4957-9b17-592a26f26520_20190405_0 92527_372.jpg, 00:00:00, 0.00 m Start node type, manhole, reference number: S6

S6X_a4098aa4-0653-4636-a51a-36339279b92e_20190405_0 92636_205.jpg, 00:00:46, 4.39 m Connection other than junction at 12 o'clock, diameter:

S6X_81383c55-9e7a-4746-8099-ef1c849ac6b8_20190405_0 92812_269.jpg, 00:02:07, 14.77 m Connection other than junction at 12 o'clock, diameter:

S6X_91b31115-cf97-4745-8a43-0827462e78b0_20190405_0 92621_053.jpg, 00:00:39, 4.14 m Connection other than junction at 12 o'clock, diameter:

S6X_c9ec7afd-1a4f-4ea7-9098-e3660764c0f2_20190405_09 2750_886.jpg, 00:01:54, 14.22 m Connection other than junction at 12 o'clock, diameter:

Broomfield Court, Midleton 20

Tel. 021 - 4770797 info@munsterdrain.com

Section Pictures - 05/04/2019 - S6X

 Section
 Inspection Direction
 PLR
 Client's Job Ref
 Contractor's Job Ref

 7
 Downstream
 S6X
 KM.04.19.67

S6X_bdf240ab-03ce-4839-a13b-4a7ff26210f2_20190405_092 906_364.jpg, 00:02:43, 18.17 m Connection other than junction at 12 o'clock, diameter:

S6X_d6038f54-fdae-433f-a67f-0de6ba9aa6ba_20190405_093 028_351.jpg, 00:03:47, 27.62 m Connection other than junction at 12 o'clock, diameter:

S6X_ddbe4989-b184-447f-9b4f-07cca075102e_20190405_09 3136_478.jpg, 00:04:39, 34.61 m Connection other than junction at 12 o'clock, diameter:

S6X_906c9892-9f70-4388-9326-8bfcfe449905_20190405_09 3015_084.jpg, 00:03:41, 27.51 m Connection other than junction at 12 o'clock, diameter:

S6X_3f5f0a68-e51d-4e08-a22b-9b6fb0ced204_20190405_09 3108_985.jpg, 00:04:26, 32.56 m Connection other than junction at 12 o'clock, diameter.

S6X_1735cf16-efdb-4b0a-88ca-38dbbd134ab1_20190405_09 3229_036.jpg, 00:05:23, 41.57 m Connection other than junction at 12 o'clock, diameter:

Tel. 021 - 4770797 info@munsterdrain.com

Section Pictures - 05/04/2019 - S6X

Section	Inspection Direction	PLR	Client's Job Ref	Contractor's Job Ref
7	Downstream	S6X	KM.04.19.67	

S6X_28decd9d-07d9-44c7-92b2-5de24c9dc43b_20190405_0 93250_338.jpg, 00:05:35, 42.14 m Connection other than junction at 12 o'clock, diameter:

S6X_884f3d3d-f874-4854-8418-3b70886c52c6_20190405_09 3453_196.jpg, 00:07:02, 52.98 m Connection intruding at 12 o'clock, diameter: 100mm,

S6X_c5a221d9-8216-4a70-82c9-317fa8dbc8cf_20190405_09 3635_123.jpg, 00:08:05, 58.07 m Connection other than junction at 12 o'clock, diameter:

S6X_db2ccba5-02ab-4808-a2f3-f6fb28bc5a34_20190405_09 3553_252.jpg, 00:07:32, 53.79 m Connection intruding at 12 o'clock, diameter: 100mm,

S6X_2600c881-53cf-4c40-b02b-ee08dc7ae9b1_20190405_0 93705_399.jpg, 00:08:30, 61.18 m Finish node type, manhole, reference number: S7

Tel. 021 - 4770797 info@munsterdrain.com

Section Inspection - 05/04/2019 - S7X

Section 9	Inspection 1	Date 05/04/19	Time 9:49	Client's Job Ref KM.04.19.67	Weather No Rain Or Snow	Pre Cleaned Yes	PLR S7X
	erator eth Murray	Vehi		Camera Mini-Cam	Preset Length Not Specified	Legal Status Not Specified	Alternative ID Not Specified

Town or Village:	Midleton	Inspection Direction:	Downstream	Upstream Node:	S7
Road:	Avoncore Estate	Inspected Length:	31.38 m	Upstream Pipe Depth:	2.800 m
Location:	Road	Total Length:	31.38 m	Downstream Node:	S8
Surface Type:	Asphalt Highway	Joint Length:	0.00 m	Downstream Pipe Depth:	2.630 m
Use:	Surface water		Pipe Shape:	Circular	
Type of Pipe:	Gravity drain/sewer		Dia/Height:	600 mm	
Year Constructed:			Pipe Material:	Concrete	
Flow Control:	No flow control		Lining Type:	No Lining	
Inspection Purpose:	Sample survey to det	ermine asset condition	Lining Material:	No Lining	

cale: 1:273	Position [m]	Code	Observation	MPEG	Photo	Grade
Depth: 2.8	80 m					
	0.00	МН	Start node type, manhole, reference number: S7	00:00:00		
	0.00	GP	General photograph taken at this point: Concrete in line	00:00:07		
	0.00	CM	Cracks, multiple from 4 o'clock to 6 o'clock	00:00:24		3
	0.00	FS	Fracture spiral from 9 o'clock to 3 o'clock	00:00:40	133 Jan	4
	0.07	GP	General photograph taken at this point: Pipe layed through surveying pipe	20:00:54	<i>y</i> .	S.
	0.07	SRB	Sealing ring broken from 3 o'clock to 9 o'clock	00:01:01	20%	Po
+	0.37	CS	Cracks, spiral from 12 o'clock to 12 o'clock	00:01:21	Ty,	3
	1.34	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:01:38	11	and the same
0	3.48	GP	General photograph taken at this point: Concrete in line	00:01:58		
	5.72	CN	Connection other than junction at 1 o'clock, diameter: 100mm	00:02:16		
	21.87	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:03:30		
	31.38	MHF	Finish node type, manhole, reference number: S8	00:04:26		

- - Paris - 1 - 1 - 1 - 1 - 1

STR No. Def	STR Peak	STR Mean	STR Total	STR Grade	SER No. Def	SER Peak	SER Mean	SER Total	SER Grade
4	165.0	5.3	165.0	4.0	0	0.0	0.0	0.0	1.0

Tel. 021 - 4770797 info@munsterdrain.com

Section Pictures - 05/04/2019 - S7X

Section	Inspection Direction	PLR	Client's Job Ref	Contractor's Job Ref
9	Downstream	S7X	KM.04.19.67	

S7X_61b2b2d6-a4dc-436d-b3c1-1745fe7a4a02_20190405_0 95008_174.jpg, 00:00:00, 0.00 m Start node type, manhole, reference number: S7

S7X_e95e40db-f421-4224-9e8c-5d1c64228623_20190405_0 95114_099.jpg, 00:00:24, 0.00 m Cracks, multiple from 4 o'clock to 6 o'clock

S7X_975bed17-9008-4230-9468-a5f4fb99637b_20190405_09 5036_538.jpg, 00:00:07, 0.00 m General photograph taken at this point

S7X_ca062aaf-6af5-4bed-ad91-987a9282a6d7_20190405_09 5147_073.jpg, 00:00:40, 0.00 m Fracture spiral from 9 o'clock to 3 o'clock

S7X_507b6eab-e483-4ccb-9798-b9840ae9fe90_20190405_0 95241_489.jpg, 00:01:01, 0.07 m Sealing ring broken from 3 o'clock to 9 o'clock

Tel. 021 - 4770797 info@munsterdrain.com

Section Pictures - 05/04/2019 - S7X

Section Inspection Direction PLR Client's Job Ref Contractor's Job Ref
9 Downstream S7X KM.04.19.67

S7X_7668e268-54dd-4054-bff4-0173f5f9763b_20190405_095 314_961.jpg, 00:01:21, 0.37 m Cracks, spiral from 12 o'clock to 12 o'clock

S7X_45db0c5d-8ed2-4482-a9ef-89be9f78f5ff_20190405_095 410_824.jpg, 00:01:58, 3.48 m General photograph taken at this point

S7X_31436574-988a-4e7e-9a63-8803c35111fa_20190405_0 95559_947.jpg, 00:03:30, 21.87 m Connection other than junction at 12 o'clock, diameter:

S7X_5389aa5f-4fe3-4cf8-b377-cfb7861908ba_20190405_095 338_868.jpg, 00:01:38, 1.34 m Connection other than junction at 12 o'clock, diameter:

S7X_ff2f0039-0154-4204-b1e9_e659e7926ade_20190405_09 5439_124.jpg, 00 02:16, 5.72 m Connection other than junction at 1 o'clock, diameter: 100mm

S7X_a6d2ef8d-17e9-4708-9152-e0ca7997194e_20190405_0 95701_470.jpg, 00:04:26, 31.38 m Finish node type, manhole, reference number: S8

Tel. 021 - 4770797 info@munsterdrain.com

Section Inspection - 05/04/2019 - S8X

Section	Inspection	Date 05/04/19	Time	Client's Job Ref	Weather	Pre Cleaned	PLR
10	1		11:25	KM.04.19.67	No Rain Or Snow	Yes	S8X
	erator th Murray	Vehi	77.5	Camera Mini-Cam	Preset Length Not Specified	Legal Status Not Specified	Alternative ID Not Specified

Town or Village:	Midleton	Inspection Direction:	Downstream	Upstream Node:	S8
Road:	Avoncore Estate	Inspected Length:	78.81 m	Upstream Pipe Depth:	2.630 m
Location:	Road	Total Length:	78.81 m	Downstream Node:	S9
Surface Type:	Asphalt Highway	Joint Length:	0.00 m	Downstream Pipe Depth:	2.180 m
Use:	Surface water		Pipe Shape:	Circular	
Type of Pipe:	Gravity drain/sewer		Dia/Height:	600 mm	
Year Constructed:			Pipe Material:	Concrete	
Flow Control:	No flow control		Lining Type:	No Lining	
Inspection Purpose:	Sample survey to dete	ermine asset condition	Lining Material:	No Lining	

Comments:

Recommendations:

S8

Scale: 1:686 Position [m] Code Observation MPEG Photo Grade

Depth: 2.63 m

0.00

MH Start node type, manhole, reference number: S8

00:00:00

00:14:34

Survey abandoned: Survey will continue from other end

78.81

Tel. 021 - 4770797 info@munsterdrain.com

Section Pictures - 05/04/2019 - S8X

Section	Inspection Direction	PLR	Client's Job Ref	Contractor's Job Ref
10	Downstream	S8X	KM.04.19.67	

S8X_416171ae-cd8c-4dee-a7c8-081971adace7_20190405_1 12732_811.jpg, 00:00:00, 0.00 m Start node type, manhole, reference number: S8

S8X_f3ae3c52-c9e2-435d-85d9-ce996e3978a7_20190405_1 14838_269.jpg, 00:14:34, 78.81 m Survey abandoned

Broomfield Court, Midleton 27

Tel. 021 - 4770797 info@munsterdrain.com

Section Inspection - 05/04/2019 - S8X

Section	Inspection	Date 05/04/19	Time	Client's Job Ref	Weather	Pre Cleaned	PLR
11	1		12:00	KM.04.19.67	No Rain Or Snow	Yes	S8X
1 2 2 1 1 1 1 1 1 1	erator h Murray	Vehi 14		Camera Mini-Cam	Preset Length Not Specified	Legal Status Not Specified	Alternative ID Not Specified

Town or Village:	Midleton	Inspection Direction:	Upstream	Upstream Node:	S8
Road:	Avoncore Estate	Inspected Length:	20.73 m	Upstream Pipe Depth:	2.630 m
Location:	Road	Total Length:	20.73 m	Downstream Node:	S9
Surface Type:	Asphalt Highway	Joint Length:	0.00 m	Downstream Pipe Depth:	2.180 m
Use:	Surface water		Pipe Shape:	Circular	
Type of Pipe:	Gravity drain/sewer		Dia/Height:	600 mm	
Year Constructed:			Pipe Material:	Concrete	
Flow Control:	No flow control		Lining Type:	No Lining	
Inspection Purpose:	Sample survey to dete	ermine asset condition	Lining Material:	No Lining	

Comments:

Recommendations:

Scale: 1:181 Position [m] Code Observation MPEG Photo Grade

Depth: 2.18 m

S9

0.00 MH Start node type, manhole, reference number: S9 00:00:00

00:01:52

Tel. 021 - 4770797 info@munsterdrain.com

Section Pictures - 05/04/2019 - S8X

Section	Inspection Direction	PLR	Client's Job Ref	Contractor's Job Ref
11	Upstream	S8X	KM.04.19.67	

S8X_7e3b0df1-74e1-44e9-b001-48fa4edb2e65_20190405_12 0112_208.jpg, 00:00:00, 0.00 m Start node type, manhole, reference number: S9

S8X_dd51b15e-55e5-42e3-8028-90a36a45cfef_20190405_12 0328_014.jpg, 00:01:52, 20.73 m Survey abandoned

Broomfield Court, Midleton 29

Tel. 021 - 4770797 info@munsterdrain.com

Section Inspection - 05/04/2019 - S9X

Section	Inspection	Date 05/04/19	Time	Client's Job Ref	Weather	Pre Cleaned	PLR
12	1		12:05	KM.04.19.67	No Rain Or Snow	Yes	S9X
	erator th Murray	Vehi 14	7.00	Camera Mini-Cam	Preset Length Not Specified	Legal Status Not Specified	Alternative ID Not Specified

Town or Village:	Midleton	Inspection Direction:	Downstream	Upstream Node:	S9
Road:	Elm Grove	Inspected Length:	9.92 m	Upstream Pipe Depth:	2.180 m
Location:	Road	Total Length:	9.92 m	Downstream Node:	S10
Surface Type:	Asphalt Highway	Joint Length:	0.00 m	Downstream Pipe Depth:	2.130 m
Use:	Surface water		Pipe Shape:	Circular	
Type of Pipe:	Gravity drain/sewer		Dia/Height:	600 mm	
Year Constructed:			Pipe Material:	Concrete	
Flow Control:	No flow control		Lining Type:	No Lining	
Inspection Purpose:	Sample survey to det	ermine asset condition	Lining Material:	No Lining	

Comments:

Recommendations:

Scale: 1:87 Position [m] Code Observation MPEG Photo Grade

Depth: 2.18 m

S9

MHF Finish node type, manhole, reference number: S10

00:00:49

Depth: 2.13 m

STR No. Def	STR Peak	STR Mean	STR Total	STR Grade	SER No. Def	SER Peak	SER Mean	SER Total	SER Grade
0	0.0	0.0	0.0	1.0	0	0.0	0.0	0.0	1.0

Tel. 021 - 4770797 info@munsterdrain.com

Section Pictures - 05/04/2019 - S9X

Section	Inspection Direction	PLR	Client's Job Ref	Contractor's Job Ref
12	Downstream	S9X	KM.04.19.67	

\$9X_144cd6f6-0f76-4b04-90bd-f1f8add8c847_20190405_120 737_601.jpg, 00:00:00, 0.00 m Start node type, manhole, reference number: \$9

S9X_ea66e2f4-6960-4c58-b4e6-be7f4ad17f91_20190405_12 0835_240.jpg, 00:00:49, 9.92 m Finish node type, manhole, reference number: S10

Tel. 021 - 4770797 info@munsterdrain.com

Section Inspection - 05/04/2019 - S10X

Section	Inspection	Date	Time	Client's Job Ref	Weather	Pre Cleaned	PLR
13	1	05/04/19	12:42	KM.04.19.67	No Rain Or Snow	Yes	S10X
	erator th Murray	Vehi 14	-	Camera Mini-Cam	Preset Length Not Specified	Legal Status Not Specified	Alternative ID Not Specified

Town or Village:	Midleton	Inspection Direction:	Downstream	Upstream Node:	S10
Road:	Avoncore Estate	Inspected Length:	67.57 m	Upstream Pipe Depth:	2.130 m
Location:	Road	Total Length:	67.57 m	Downstream Node:	S11
Surface Type:	Asphalt Highway	Joint Length:	0.00 m	Downstream Pipe Depth:	1.250 m
Use:	Surface water		Pipe Shape:	Circular	
Type of Pipe:	Gravity drain/sewer		Dia/Height:	600 mm	
Year Constructed:			Pipe Material:	Concrete	
Flow Control:	No flow control		Lining Type:	No Lining	
Inspection Purpose:	Sample survey to dete	ermine asset condition	Lining Material:	No Lining	

Comments:

Recommendations:

Scale: 1:588 Position [m] Code Observation MPEG Photo Grade

Depth: 1.25 m

61.26 WL Water level, 10% of the vertical dimension 00:05:21 67.57 MHF Finish node type, manhole, reference number: S11 00:06:41

STR No. Def STR Peak SER Grade STR Mean STR Total STR Grade | SER No. Def | SER Peak SER Mean SER Total 0.0 0.0 0.0 0.0 0.0 1.0

Tel. 021 - 4770797 info@munsterdrain.com

Section Pictures - 05/04/2019 - S10X

SectionInspection DirectionPLRClient's Job RefContractor's Job Ref13DownstreamS10XKM.04.19.67

\$10X_fc02f629-fa01-4181-91fa-71543718d68d_20190405_13 3713_174.jpg, 00:00:00, 0.00 m Start node type, manhole, reference number: \$10

\$10X_f3b594ef-ef55-4d79-baf5-181129d52886_20190405_13 4246_959.jpg, 00:05:21, 61.26 m Water level, 10% of the vertical dimension

\$10X_a69e2a28-feaf-4cff-85c4-7a83b30f4b02_20190405_13 4412_733.jpg, 00:06:41, 67.57 m Finish node type, manhole, reference number: \$11

Tel. 021 - 4770797 info@munsterdrain.com

Section Inspection - 05/04/2019 - S11X

Section	Inspection	Date 05/04/19	Time	Client's Job Ref	Weather	Pre Cleaned	PLR
1	1		15:47	KM.04.19.67	No Rain Or Snow	Yes	S11X
	erator th Murray	Vehi 14	7.7	Camera Mini-Cam	Preset Length Not Specified	Legal Status Not Specified	Alternative ID Not Specified

Town or Village:	Midleton	Inspection Direction:	Downstream	Upstream Node:	S11
Road:	R626	Inspected Length:	55.46 m	Upstream Pipe Depth:	1.250 m
Location:	Road	Total Length:	55.46 m	Downstream Node:	S12
Surface Type:	Asphalt Highway	Joint Length:	0.00 m	Downstream Pipe Depth:	1.970 m
Use:	Surface water		Pipe Shape:	Circular	LE SEL
Type of Pipe:	Gravity drain/sewer		Dia/Height:	600 mm	
Year Constructed:			Pipe Material:	Concrete	
Flow Control:	No flow control		Lining Type:	No Lining	
Inspection Purpose:	Sample survey to de	termine asset condition	Lining Material:	No Lining	

Comm Recom	ents: imendatio	ns:					
Scale:	1:483	Position [m]	Code	Observation	MPEG	Photo	Grade
	Depth: 1.2 S11	25 m					
		0.00	МН	Start node type, manhole, reference number: S11	00:00:00		
		7.22	CN	Connection other than junction at 1 o'clock, diameter: 150mm	00:00:53		
		30.65	CN	Connection other than junction at 1 o'clock, diameter: 150mm	00:03:15		
		30.84	CN	Connection other than junction at 1 o'clock, diameter: 150mm	00:03:25		
		53.11	CN	Connection other than junction at 1 o'clock, diameter: 150mm	00:07:57		
	S12	53.16	CN	Connection other than junction at 1 o'clock, diameter: 150mm	00:08:06		
	Depth: 1.9	55.46 07 m	MHF	Finish node type, manhole, reference number: S12	00:08:50		

STR No. Def	STR Peak	STR Mean	STR Total	STR Grade	SER No. Def	SER Peak	SER Mean	SER Total	SER Grade
0	0.0	0.0	0.0	1.0	0	0.0	0.0	0.0	1.0

Tel. 021 - 4770797 info@munsterdrain.com

Section Pictures - 05/04/2019 - S11X

 Section
 Inspection Direction
 PLR
 Client's Job Ref
 Contractor's Job Ref

 1
 Downstream
 S11X
 KM.04.19.67

S11X_bced69d4-79c0-4d55-a302-6040b96b55cc_20190405_ 160032_561.jpg, 00:07:57, 53.11 m Connection other than junction at 1 o'clock, diameter: 150mm

S11X_8c26414c-5570-4c5c-9c45-72a3d62b1144_20190405_ 155300_478.jpg, 00:00:53, 7.22 m Connection other than junction at 1 o'clock, diameter: 150mm

\$11X_b51732fa-f87c-498b-98f5-c59dd0c10ad3_20190405_1 55550_998.jpg, 00:03:25_30:84 m Connection other than junction at 1 o'clock, diameter: 150mm

S11X_4159b65c-b355-45a4-92e8-229edce50242_20190405_ 160051_701.jpg, 00:08:06, 53.16 m Connection other than junction at 1 o'clock, diameter: 150mm

Tel. 021 - 4770797 info@munsterdrain.com

Section Pictures - 05/04/2019 - S11X

Section	Inspection Direction	PLR	Client's Job Ref	Contractor's Job Ref
1	Downstream	S11X	KM.04.19.67	

S11X_0c83f958-bcf9-481f-9fee-3e27b1badafb_20190405_16 0142_182.jpg, 00:08:50, 55.46 m Finish node type, manhole, reference number: S12

Broomfield Court, Midleton 36

Tel. 021 - 4770797 info@munsterdrain.com

Section Inspection - 05/04/2019 - S12X

Section 14	Inspection 1	Date 05/04/19	Time 14:45	Client's Job Ref KM.04.19.67	Weather No Rain Or Snow	Pre Cleaned Yes	PLR S12X
Operator Kenneth Murray		Vehi 14	-	Camera Mini-Cam	Preset Length Not Specified	Legal Status Not Specified	Alternative ID Not Specified

Town or Village:	Midleton	Inspection Direction:	Downstream	Upstream Node:	S12
Road:	R626	Inspected Length:	68.87 m	Upstream Pipe Depth:	1.970 m
Location:	Road	Total Length:	68.87 m	Downstream Node:	S13
Surface Type:	Asphalt Highway	Joint Length:	0.00 m	Downstream Pipe Depth	:
Use:	Surface water		Pipe Shape:	Circular	
Type of Pipe:	Gravity drain/sewer		Dia/Height:	600 mm	
Year Constructed:			Pipe Material:	Concrete	
Flow Control:	No flow control		Lining Type:	No Lining	
Inspection Purpose:	Sample survey to de	termine asset condition	Lining Material:	No Lining	
Commonts:	No access to \$13 for	r invert level			

ents: mendatio		3 13 101 IN	vert rever			
1:599	Position [m]	Code	Observation	MPEG	Photo	Grade
Depth: 1.9 S12	97 m					
	0.00	МН	Start node type, manhole, reference number: S12	00:00:00		
	1.65	WL	Water level, 10% of the vertical dimension	00:00:12		
0	2.84	CN	Connection other than junction at 12 o'clock, diameter: 150mm	00:00:28		
	12.36	CN	Connection other than junction at 12 o'clock, diameter: 150mm	00:04:18		
0	27.79	CN	Connection other than junction at 12 o'clock, diameter: 100mm	00:06:39		
	68.87	MHF	Finish node type, manhole, reference number: S13: Cover in manhole	00:11:35		
S13 Depth: m						
	1:599 Depth: 1.9 S12	1:599 Position [m] Depth: 1.97 m S12 0.00 1.65 2.84 12.36 27.79	### Depth: 1.97 m ### S12 0.00 MH 1.65 WL 2.84 CN 12.36 CN 27.79 CN 68.87 MHF S13	### Tinish node type, manhole, reference number: S13: Cover in manhole ### MHF Finish node type, manhole, reference number: S13: Cover in manhole ### MHF Finish node type, manhole, reference number: S13: Cover in manhole	### 1:599 Position [m] Code Observation MPEG Depth: 1.97 m S12	### 1:599 Position [m] Code Observation MPEG Photo

STR No. Def	STR Peak	STR Mean	STR Total	STR Grade	SER No. Def	SER Peak	SER Mean	SER Total	SER Grade
0	0.0	0.0	0.0	1.0	0	0.0	0.0	0.0	1.0

Tel. 021 - 4770797 info@munsterdrain.com

Section Pictures - 05/04/2019 - S12X

 Section
 Inspection Direction
 PLR
 Client's Job Ref
 Contractor's Job Ref

 14
 Downstream
 S12X
 KM.04.19.67

\$12X_530986e0-6df5-4e9a-9f86-33bcdb7ea806_20190405_1 45505_405.jpg, 00:00:00, 0.00 m Start node type, manhole, reference number: \$12

\$12X_c8a29280-971f-4478-a52d-44cf951e9945_20190405_1 45551_027.jpg, 00:00:28, 2.84 m Connection other than junction at 12 o'clock, diameter:

\$12X_7c569883-7420-47af-be2e-602fc3a58e52_20190405_1 50225_562.jpg, 00:06:39, 27.79 m Connection other than junction at 12 o'clock, diameter:

S12X_a4c78e13-8fa1-48da-99c7-0acaecf3be4c_20190405_1 45527_027.jpg, 00:00:12, 1.65 m Water level, 10% of the vertical dimension

\$12X_1bd62a68-ad66-4de4-b315-8e019f14ab10_20190405_ 145952_710.jpg, 00:04:18, 12.36 m Connection other than junction at 12 o'clock, diameter:

S12X_14a235e1-3da0-4edc-ba07-3a80a5ae47d2_20190405_ 150825_482.jpg, 00:11:35, 68.87 m Finish node type, manhole, reference number: S13

Tel. 021 - 4770797 info@munsterdrain.com

WinCan

Notes:

Thank you for choosing to use Munster Drain Services to carry out your drainage investigation works.

The results and views carried in this report are those of the engineer(s) appointed to carry out the investigation and are considered relevant on the day of the survey. Drain and sewer performance is known to alter over time, so liability cannot be accepted for differences between the recorded data and the actual data at a time after this report was generated.

This survey has been created in accordance with the drainage standard used in the country and language settings for this PC.

If a DVD has been supplied with this report, please note that it can only be used in a Windows based PC. Please browse the DVD and navigate to the PDF folder to find project-based documents such as drawings, engineer's site notes and survey specifications amongst others.

CCTV subsidence investigations do not account for the water tightness of the pipes and are merely a visual inspection of inside of the drains. CCTV drainage engineers are generally not qualified to comment on the causes of subsidence, and can only suggest required remedial actions for the pipes, and not the affected buildings.

Subsidence is a building structural failure, which can occur for many reasons. Although drainage failures can contribute to subsidence problems, other causes should always be investigated as part of a considered approach. In order to eliminate drains from suspicion, it is suggested that all pipes within at least 10m of the subsidence area be pressure tested over and above a CCTV inspection, and remedial suggestions considered based on the findings.

Unless otherwise specified in an associated task order (or similar), the data gathered in this report may not be suitable for use as a pre-lining investigation. Munster Drain are happy to carry out such surveys, but this must be agreed prior to the commencement of the works, and a the client must specify the data they wish to capture and the acceptable tolerances.

Where GPS coordinates and heights have been issued within this report, they are to 1m accuracy, and 2m accuracy for heights. Greater accuracy can be provided on request.

Appendix C: Surface Water Receiving Network – Design Calculations

Brian O'Kennedy and Associate Shannon House Church Road File: Existing Storm network.pf Network: Existing Storm Network George Forde 09/05/2023

Page 1

Design Settings

Rainfall Methodology FSR Maximum Time of Concentration (mins) 30.00 Return Period (years) 10 Maximum Rainfall (mm/hr) 50.0 Minimum Velocity (m/s) Additional Flow (%) 1.00 0 FSR Region Scotland and Ireland Connection Type **Level Inverts** M5-60 (mm) 19.000 Minimum Backdrop Height (m) 0.200 Ratio-R 0.300 Preferred Cover Depth (m) 1.200 0.750 Include Intermediate Ground CV Time of Entry (mins) 30.00 Enforce best practice design rules ✓

Nodes

Name	Area (ha)	T of E (mins)	Add Inflow (I/s)	Cover Level (m)	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
ES01	1.991	30.00		18.850	1500	587914.225	574698.340	3.150
ES02	0.126	30.00	53.0	18.981	1500	587898.759	574697.948	3.330
ES03	0.046	30.00		17.938	1500	587898.370	574658.624	2.565
ES04				17.434	1500	587885.854	574664.711	2.150
ES05	0.333	30.00		17.060	1500	587828.502	574699.391	2.630
ES06	0.183	30.00		14.970	1500	587762.925	574719.103	2.330
ES07	0.684	30.00		14.893	1500	587733.243	574774.628	2.800
ES08				14.316	1500	587701.968	574762.770	2.630
ES09				11.588	1500	587613.683	574714.989	2.180
ES10				11.324	1500	587619.057	574704.295	2.130
ES11	0.152	30.00		9.895	1500	587557.883	574670.588	1.250
ES12				9.670	1500	587584.670	574619.283	1.970
ES13				9.670	1500	587503.473	574567.803	2.771

Links

Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)
1.000	ES01	ESO2	15.471	0.600	15.700	15.651	0.049	315.7	525	30.00	35.0
1.000	L301	L302	15.4/1	0.000	13.700	13.031	0.049	313.7	323	30.00	33.0
1.001	ES02	ES03	39.326	0.600	15.651	15.373	0.278	141.5	525	30.00	35.0
1.002	ES03	ES04	13.918	0.600	15.373	15.284	0.089	156.4	525	30.00	35.0
1.003	ES04	ES05	67.022	0.600	15.284	14.430	0.854	78.5	525	30.00	35.0
1.004	ES05	ES06	68.476	0.600	14.430	12.640	1.790	38.3	525	30.00	35.0
1.005	ES06	ES07	62.961	0.600	12.640	12.093	0.547	115.1	600	30.00	35.0
1.006	ES07	ES08	33.448	0.600	12.093	11.686	0.407	82.2	600	30.00	35.0
1.007	ES08	ES09	100.386	0.600	11.686	9.408	2.278	44.1	600	30.00	35.0
1.008	ES09	ES10	11.968	0.600	9.408	9.194	0.214	55.9	600	30.00	35.0

Name	Vel	Cap	Flow	US	DS	Σ Area	Σ Add	Pro	Pro
	(m/s)	(I/s)	(I/s)	Depth	Depth	(ha)	Inflow	Depth	Velocity
				(m)	(m)		(I/s)	(mm)	(m/s)
1.000	1.255	271.6	188.7	2.625	2.805	1.991	0.0	323	1.351
1.001	1.881	407.2	253.6	2.805	2.040	2.117	53.0	301	1.978
1.002	1.788	387.1	258.0	2.040	1.625	2.163	53.0	314	1.908
1.003	2.530	547.6	258.0	1.625	2.105	2.163	53.0	254	2.494
1.004	3.629	785.6	289.5	2.105	1.805	2.496	53.0	220	3.366
1.005	2.269	641.5	306.8	1.730	2.200	2.678	53.0	292	2.244
1.006	2.687	759.8	371.6	2.200	2.030	3.362	53.0	296	2.674
1.007	3.675	1039.0	371.6	2.030	1.580	3.362	53.0	247	3.381
1.008	3.260	921.8	371.6	1.580	1.530	3.362	53.0	265	3.093

Brian O'Kennedy and Associate Shannon House Church Road Douglas, Cork File: Existing Storm network.pf Network: Existing Storm Network George Forde 09/05/2023

Page 2

<u>Links</u>

Name	US	DS	Length	ks (mm) /	US IL	DS IL	Fall	Slope	Dia	T of C	Rain
	Node	Node	(m)	n	(m)	(m)	(m)	(1:X)	(mm)	(mins)	(mm/hr)
1.009	ES10	ES11	69.846	0.600	9.194	8.645	0.549	127.2	600	30.00	35.0
1.010	ES11	ES12	57.877	0.600	8.645	7.700	0.945	61.2	600	30.00	35.0
1.011	ES12	ES13	96.141	0.600	7.700	6.899	0.801	120.0	600	30.00	35.0

Name	Vel	Cap	Flow	US	DS	Σ Area	Σ Add	Pro	Pro
	(m/s)	(I/s)	(I/s)	Depth	Depth	(ha)	Inflow	Depth	Velocity
				(m)	(m)		(I/s)	(mm)	(m/s)
1.009	2.157	610.0	371.6	1.530	0.650	3.362	53.0	339	2.258
1.010	3.115	880.7	386.1	0.650	1.370	3.515	53.0	277	3.016
1 011	2 222	628.2	386 1	1 370	2 171	3 515	53.0	341	2 329

Pipeline Schedule

Link	Length	Slope	Dia	Link	US CL	US IL	US Depth	DS CL	DS IL	DS Depth
	(m)	(1:X)	(mm)	Type	(m)	(m)	(m)	(m)	(m)	(m)
1.000	15.471	315.7	525	Circular	18.850	15.700	2.625	18.981	15.651	2.805
1.001	39.326	141.5	525	Circular	18.981	15.651	2.805	17.938	15.373	2.040
1.002	13.918	156.4	525	Circular	17.938	15.373	2.040	17.434	15.284	1.625
1.003	67.022	78.5	525	Circular	17.434	15.284	1.625	17.060	14.430	2.105
1.004	68.476	38.3	525	Circular	17.060	14.430	2.105	14.970	12.640	1.805
1.005	62.961	115.1	600	Circular	14.970	12.640	1.730	14.893	12.093	2.200
1.006	33.448	82.2	600	Circular	14.893	12.093	2.200	14.316	11.686	2.030
1.007	100.386	44.1	600	Circular	14.316	11.686	2.030	11.588	9.408	1.580
1.008	11.968	55.9	600	Circular	11.588	9.408	1.580	11.324	9.194	1.530
1.009	69.846	127.2	600	Circular	11.324	9.194	1.530	9.895	8.645	0.650
1.010	57.877	61.2	600	Circular	9.895	8.645	0.650	9.670	7.700	1.370
1 011	96 141	120.0	600	Circular	9 670	7 700	1 370	9 670	6 899	2 171

Link	US	Dia	Node	MH	DS	Dia	Node	MH
	Node	(mm)	Type	Type	Node	(mm)	Type	Type
1.000	ES01	1500	Manhole	Adoptable	ES02	1500	Manhole	Adoptable
1.001	ES02	1500	Manhole	Adoptable	ES03	1500	Manhole	Adoptable
1.002	ES03	1500	Manhole	Adoptable	ES04	1500	Manhole	Adoptable
1.003	ES04	1500	Manhole	Adoptable	ES05	1500	Manhole	Adoptable
1.004	ES05	1500	Manhole	Adoptable	ES06	1500	Manhole	Adoptable
1.005	ES06	1500	Manhole	Adoptable	ES07	1500	Manhole	Adoptable
1.006	ES07	1500	Manhole	Adoptable	ES08	1500	Manhole	Adoptable
1.007	ES08	1500	Manhole	Adoptable	ES09	1500	Manhole	Adoptable
1.008	ES09	1500	Manhole	Adoptable	ES10	1500	Manhole	Adoptable
1.009	ES10	1500	Manhole	Adoptable	ES11	1500	Manhole	Adoptable
1.010	ES11	1500	Manhole	Adoptable	ES12	1500	Manhole	Adoptable
1.011	ES12	1500	Manhole	Adoptable	ES13	1500	Manhole	Adoptable

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	Link	IL (m)	Dia (mm)
ES01	587914.225	574698.340	18.850	3.150	1500	0 ←			
						О	1.000	15.700	525

File: Existing Storm network.pf Network: Existing Storm Network George Forde 09/05/2023 Page 3

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	Link	IL (m)	Dia (mm)
ES02	587898.759	574697.948	18.981	3.330	1500	1	1.000	15.651	525
						1			
						0	1.001	15.651	525
ES03	587898.370	574658.624	17.938	2.565	1500	0 1	1.001	15.373	525
						0	1.002	15.373	525
ES04	587885.854	574664.711	17.434	2.150	1500	0 1	1.002	15.284	525
						0	1.003	15.284	525
ES05	587828.502	574699.391	17.060	2.630	1500	0 1	1.003	14.430	525
						0	1.004	14.430	525
ES06	587762.925	574719.103	14.970	2.330	1500	0 1	1.004	12.640	525
						0	1.005	12.640	600
ES07	587733.243	574774.628	14.893	2.800	1500	1	1.005	12.093	600
						0	1.006	12.093	600
ES08	587701.968	574762.770	14.316	2.630	1500	1	1.006	11.686	600
2300	307701.300	374702.770	14.510	2.030	1300	0			
FC00	F07C12 C02	F74714 000	11 500	2 100	1500	0	1.007	11.686	600
ES09	587613.683	574714.989	11.588	2.180	1500		1.007	9.408	600
						0 0	1.008	9.408	600
ES10	587619.057	574704.295	11.324	2.130	1500		1.008	9.194	600
						0	1.009	9.194	600
ES11	587557.883	574670.588	9.895	1.250	1500	1	1.009	8.645	600
						0	1.010	8.645	600
ES12	587584.670	574619.283	9.670	1.970	1500	1	1.010	7.700	600
=0:0			0	0 == :	4500	0	1.011	7.700	600
ES13	587503.473	574567.803	9.670	2.771	1500		1.011	6.899	600

Brian O'Kennedy and Associate Shannon House Church Road Douglas, Cork

File: Existing Storm network.pf
Network: Existing Storm Network
George Forde
09/05/2023

Page 4

Simulation Settings

Rainfall Methodology	FSR	Drain Down Time (mins)	240
FSR Region	Scotland and Ireland	Additional Storage (m³/ha)	20.0
M5-60 (mm)	19.000	Check Discharge Rate(s)	\checkmark
Ratio-R	0.300	1 year (I/s)	20.2
Summer CV	0.750	30 year (l/s)	40.2
Winter CV	0.840	100 year (l/s)	47.7
Analysis Speed	Normal	Check Discharge Volume	\checkmark
Skip Steady State	\checkmark	100 year 360 minute (m³)	1702

Storm Durations

15	30	60	120	180	240	360	480	600	720	960	1440

Return Period (years)	Climate Change (CC %)	Additional Area (A %)	Additional Flow (Q %)	
5	10	0	0	
10	10	0	0	
30	10	0	0	
100	10	0	0	

Pre-development Discharge Rate

Site Makeup	Greenfield	Growth Factor 30 year Growth Factor 100 year Betterment (%) QBar Q 1 year (I/s) Q 30 year (I/s) Q 100 year (I/s)	1.65
Greenfield Method	IH124		1.96
Positively Drained Area (ha)	7.950		0
SAAR (mm)	1091		24.4
Soil Index	2		20.2
SPR	0.30		40.2
Region	11		47.7
Region Growth Factor 1 year	11 0.83	Q 100 year (I/s)	47.7

Pre-development Discharge Volume

100	Return Period (years)	Greenfield	Site Makeup
0	Climate Change (%)	FSR/FEH	Greenfield Method
360	Storm Duration (mins)	7.950	Positively Drained Area (ha)
0	Betterment (%)	2	Soil Index
0.341	PR	0.30	SPR
1702	Runoff Volume (m³)	125.228	CWI

Brian O'Kennedy and Associate Shannon House Church Road Douglas, Cork

File: Existing Storm network.pf Network: Existing Storm Network George Forde 09/05/2023

Page 5

Results for 5 year +10% CC Critical Storm Duration. Lowest mass balance: 97.59%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
60 minute winter	ES01	45	16.025	0.325	158.0	4.6766	0.0000	OK
60 minute winter	ES02	45	15.949	0.298	219.8	0.7529	0.0000	OK
60 minute winter	ES03	45	15.684	0.311	222.6	0.6605	0.0000	OK
60 minute winter	ES04	54	15.529	0.245	221.7	0.4333	0.0000	OK
60 minute winter	ES05	45	14.628	0.198	247.2	0.8504	0.0000	OK
60 minute winter	ES06	45	12.915	0.275	260.8	0.9180	0.0000	OK
60 minute winter	ES07	45	12.388	0.295	313.6	1.9622	0.0000	OK
60 minute winter	ES08	45	11.906	0.220	312.1	0.3887	0.0000	OK
60 minute winter	ES09	54	9.712	0.304	310.9	0.5371	0.0000	OK
60 minute winter	ES10	54	9.512	0.318	310.8	0.5626	0.0000	OK
60 minute winter	ES11	55	8.900	0.255	320.5	1.0701	0.0000	OK
60 minute winter	ES12	55	8.012	0.312	320.8	0.5514	0.0000	OK
60 minute winter	ES13	55	7.195	0.296	320.9	0.0000	0.0000	OK

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Outflow)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
60 minute winter	ES01	1.000	ES02	156.8	1.175	0.577	2.0639	
60 minute winter	ES02	1.001	ES03	218.9	1.687	0.538	5.1064	
60 minute winter	ES03	1.002	ES04	221.7	1.914	0.573	1.6111	
60 minute winter	ES04	1.003	ES05	222.1	2.570	0.406	5.7981	
60 minute winter	ES05	1.004	ES06	246.3	2.611	0.314	6.4701	
60 minute winter	ES06	1.005	ES07	259.3	1.983	0.404	8.3053	
60 minute winter	ES07	1.006	ES08	312.1	2.703	0.411	3.8694	
60 minute winter	ES08	1.007	ES09	310.9	2.638	0.299	11.8821	
60 minute winter	ES09	1.008	ES10	310.8	2.107	0.337	1.7658	
60 minute winter	ES10	1.009	ES11	309.9	2.337	0.508	9.2756	
60 minute winter	ES11	1.010	ES12	320.8	2.451	0.364	7.5774	
60 minute winter	ES12	1.011	ES13	320.9	2.241	0.511	13.7715	1587.7

Brian O'Kennedy and Associate Shannon House Church Road

File: Existing Storm network.pf Network: Existing Storm Netwo

George Forde 09/05/2023 Page 6

Results for 10 year +10% CC Critical Storm Duration. Lowest mass balance: 97.59%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
60 minute winter	ES01	50	16.056	0.356	183.4	5.1289	0.0000	OK
60 minute winter	ES02	50	15.974	0.323	246.6	0.8148	0.0000	OK
60 minute winter	ES03	50	15.707	0.334	249.7	0.7099	0.0000	OK
60 minute winter	ES04	54	15.546	0.262	248.8	0.4634	0.0000	OK
60 minute winter	ES05	50	14.641	0.211	278.5	0.9072	0.0000	OK
60 minute winter	ES06	50	12.936	0.296	294.2	0.9890	0.0000	OK
60 minute winter	ES07	50	12.411	0.318	355.6	2.1191	0.0000	OK
60 minute winter	ES08	50	11.921	0.235	353.8	0.4160	0.0000	OK
60 minute winter	ES09	54	9.740	0.332	352.5	0.5862	0.0000	OK
60 minute winter	ES10	54	9.538	0.344	352.4	0.6085	0.0000	OK
60 minute winter	ES11	54	8.920	0.275	364.2	1.1564	0.0000	OK
60 minute winter	ES12	55	8.038	0.338	363.5	0.5973	0.0000	OK
60 minute winter	ES13	55	7.218	0.319	364.3	0.0000	0.0000	OK

Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
60 minute winter	ES01	1.000	ES02	182.0	1.232	0.670	2.2833	
60 minute winter	ES02	1.001	ES03	245.5	1.728	0.603	5.5878	
60 minute winter	ES03	1.002	ES04	248.8	1.968	0.643	1.7568	
60 minute winter	ES04	1.003	ES05	249.1	2.643	0.455	6.3256	
60 minute winter	ES05	1.004	ES06	277.4	2.685	0.353	7.0812	
60 minute winter	ES06	1.005	ES07	292.5	2.031	0.456	9.1497	
60 minute winter	ES07	1.006	ES08	353.8	2.785	0.466	4.2550	
60 minute winter	ES08	1.007	ES09	352.5	2.697	0.339	13.1548	
60 minute winter	ES09	1.008	ES10	352.4	2.155	0.382	1.9574	
60 minute winter	ES10	1.009	ES11	351.9	2.399	0.577	10.2417	
60 minute winter	ES11	1.010	ES12	363.5	2.514	0.413	8.3686	
60 minute winter	ES12	1.011	ES13	364.3	2.307	0.580	15.1814	1687.7

Shannon House Church Road Douglas, Cork

Brian O'Kennedy and Associate | File: Existing Storm network.pf | Page 7 Network: Existing Storm Netwo George Forde 09/05/2023

Results for 30 year +10% CC Critical Storm Duration. Lowest mass balance: 97.59%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
60 minute winter	ES01	46	16.118	0.418	232.1	6.0182	0.0000	OK
60 minute winter	ES02	46	16.022	0.371	298.0	0.9373	0.0000	OK
60 minute winter	ES03	46	15.751	0.378	302.1	0.8043	0.0000	OK
60 minute winter	ES04	46	15.579	0.295	301.0	0.5207	0.0000	OK
60 minute winter	ES05	46	14.665	0.235	338.5	1.0110	0.0000	OK
60 minute winter	ES06	46	12.977	0.337	358.5	1.1247	0.0000	OK
60 minute winter	ES07	46	12.456	0.363	436.1	2.4135	0.0000	OK
60 minute winter	ES08	46	11.949	0.263	433.9	0.4656	0.0000	OK
60 minute winter	ES09	54	9.793	0.385	432.4	0.6801	0.0000	OK
60 minute winter	ES10	54	9.588	0.394	431.6	0.6962	0.0000	OK
60 minute winter	ES11	54	8.959	0.314	447.6	1.3200	0.0000	OK
60 minute winter	ES12	55	8.088	0.388	446.3	0.6853	0.0000	OK
60 minute winter	ES13	55	7.262	0.363	447.2	0.0000	0.0000	OK

Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
60 minute winter	ES01	1.000	ES02	230.3	1.323	0.848	2.6889	
60 minute winter	ES02	1.001	ES03	296.7	1.798	0.729	6.4879	
60 minute winter	ES03	1.002	ES04	301.0	2.059	0.777	2.0273	
60 minute winter	ES04	1.003	ES05	299.7	2.764	0.547	7.3192	
60 minute winter	ES05	1.004	ES06	337.2	2.803	0.429	8.2226	
60 minute winter	ES06	1.005	ES07	356.3	2.110	0.556	10.7383	
60 minute winter	ES07	1.006	ES08	433.9	2.919	0.571	4.9698	
60 minute winter	ES08	1.007	ES09	432.4	2.789	0.416	15.5343	
60 minute winter	ES09	1.008	ES10	431.6	2.230	0.468	2.3166	
60 minute winter	ES10	1.009	ES11	432.1	2.498	0.708	12.0618	
60 minute winter	ES11	1.010	ES12	446.3	2.611	0.507	9.8813	
60 minute winter	ES12	1.011	ES13	447.2	2.411	0.712	17.8323	1881.4

Brian O'Kennedy and Associate Shannon House Network: Exicure Church Road George Ford Douglas, Cork 09/05/2023

File: Existing Storm network.pf Network: Existing Storm Network George Forde Page 8

Results for 100 year +10% CC Critical Storm Duration. Lowest mass balance: 97.59%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
60 minute winter	ES01	48	16.219	0.519	300.3	7.4848	0.0000	OK
60 minute winter	ES02	48	16.104	0.453	369.7	1.1419	0.0000	OK
60 minute winter	ES03	48	15.816	0.443	374.9	0.9412	0.0000	OK
60 minute winter	ES04	48	15.624	0.340	373.7	0.6011	0.0000	OK
60 minute winter	ES05	48	14.699	0.269	422.5	1.1551	0.0000	OK
60 minute winter	ES06	48	13.036	0.396	448.5	1.3199	0.0000	OK
60 minute winter	ES07	48	12.518	0.425	549.2	2.8287	0.0000	OK
60 minute winter	ES08	48	11.987	0.301	546.7	0.5318	0.0000	OK
60 minute winter	ES09	54	9.874	0.466	544.9	0.8227	0.0000	OK
60 minute winter	ES10	54	9.663	0.469	542.7	0.8284	0.0000	OK
60 minute winter	ES11	54	9.015	0.370	564.3	1.5538	0.0000	OK
60 minute winter	ES12	55	8.165	0.465	563.1	0.8215	0.0000	OK
60 minute winter	ES13	55	7.327	0.428	563.4	0.0000	0.0000	OK

Link Event (Outflow)	US Node	Link	DS Node	Outflow	Velocity	Flow/Cap	Link Vol (m³)	Discharge
(Outriow)	Noue		Noue	(I/s)	(m/s)		voi (iii)	Vol (m³)
60 minute winter	ES01	1.000	ES02	297.7	1.426	1.096	3.1996	
60 minute winter	ES02	1.001	ES03	368.0	1.876	0.904	7.7141	
60 minute winter	ES03	1.002	ES04	373.7	2.164	0.965	2.3823	
60 minute winter	ES04	1.003	ES05	372.3	2.890	0.680	8.6874	
60 minute winter	ES05	1.004	ES06	420.9	2.926	0.536	9.7859	
60 minute winter	ES06	1.005	ES07	446.0	2.195	0.695	12.9263	
60 minute winter	ES07	1.006	ES08	546.7	3.067	0.720	5.9358	
60 minute winter	ES08	1.007	ES09	544.9	2.872	0.524	18.8535	
60 minute winter	ES09	1.008	ES10	542.7	2.308	0.589	2.8178	
60 minute winter	ES10	1.009	ES11	544.2	2.588	0.892	14.6110	
60 minute winter	ES11	1.010	ES12	563.1	2.695	0.639	12.0440	
60 minute winter	ES12	1.011	ES13	563.4	2.508	0.897	21.5969	2151.2

Greenfield Run-Off Rate – Design Calculations

Print

Close Report

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Calculated by:	Geo	George Forde				Site Details				
Site name:	Broc	mfield				Latitude:	51.92721° N			
Site location:		eton, Co				Longitude:	8.17265° W			
management for dev	elopme ry stan	ents", SC0 dards for	30219 (2 SuDS (D	2013) , the S efra, 2015).	SuDS Manual C This informat	753 (Ciria, 2015) ion on greenfield Date:	1677466448 May 02 2023 15:19			
Runoff estimati	on an	proach	IH12	4						
Site characteris	-	prodor	11112	.4						
Total site area (ha		05				Notes				
Methodology	a). 1.	90				(1) Is $Q_{BAR} < 2.0 \text{ l/s/ha}$?				
Q _{BAR} estimation m	ethoc	t Cole	a v dada .	f 0DD						
					and SAAR	ore set at 2.01/s/ha then limiting discharge rates				
SPR estimation me	ethod	oun		from SOIL						
Soil characteris	tics	Defa	ult	Edite	d					
SOIL type:		2		2		(2) Are flow rates < 5.0 l/s?				
HOST class:		N/A		N/A		and of a second				
SPR/SPRHOST:		0.3		0.3		Where flow rates are less than 5.0 l/s consent for discharge is usually set at 5.0 l/s if blockage from				
Hydrological characteristics			De	fault	Edited	vegetation and other materials is possible. Lowe consent flow rates may be set where the blockar risk is addressed by using appropriate drainage				
SAAR (mm):			1005		1091	elements.	propriate diamage			
Hydrological regio	n:		13		13	(2) In CDD (CDD) LOCAT . 0.00				
Growth curve fact	Growth curve factor 1 year: 0.85			0.85	(3) Is SPR/SPRHOST ≤ 0.3?					
Growth curve factor 30 years:		1.65		1.65	Where groundwater levels are low enough the use of					
Growth curve fact years:	owth curve factor 100 1.95 ars:			1.95	soakaways to avoid discharg be preferred for disposal of	-				
Growth curve fact years:	or 200		2.15		2.15					

Greenfield runoff rates	Default	Edited
Q _{BAR} (I/s):	22.12	24.35
1 in 1 year (l/s):	18.8	20.7
1 in 30 years (l/s):	36.5	40.18
1 in 100 year (I/s):	43.13	47.48
1 in 200 years (I/s):	47.56	52.35

Appendix E: Site Infiltration Test Reports

TRIAL HOLE A

Depth	900mm
Volume 75	1.06m ³
Volume 25	0.268m ³

Test

Level (mm)	Elapsed Time (min)
900	0
770	22
700	40
600	85
390	153
150	134

 $(Ap 50) = 3.036m^2$

 $Vp75-25 = 1.06-0.268 = 0.792m^3$

Tp75-25 = 156 minutes

Soil Infiltration Rate F: <u>Vp75-25</u> <u>0.792</u>

Ap50 x tp75-25 = 3.036 x 156 x 60 = 2.8x 10^{-5} m/s

TRIAL HOLE B

Depth	920mm
Volume 75	1.534m ³
Volume 25	0.396m ³

Test

Level (mm)	Elapsed Time (min)
920	0
560	10
310	25
48	48

 $(Ap 50) = 4.46m^2$

 $Vp75-25 = 1.138m^3$

Tp75-25 = 28 minutes

Soil Infiltration Rate: F: <u>Vp75-25</u> <u>1.138</u>

 $\frac{1}{15.2 \times 10^{-5} \text{ m/s}}$

TRIAL HOLE C

Depth	1400mm
Volume 75	1.119m³
Volume 25	0.327m ³

Test

Level (mm)	Elapsed Time (min)
1400	0
730	43
210	81

 $(Ap 50) = 2.752m^2$

 $Vp75-25 = 0.792m^3$

Tp75-25 = 46 minutes

Soil Infiltration Rate: F: <u>Vp75-25</u> <u>0.792</u>

 $Ap50 \times tp75-25 = 2.752 \times 46 \times 60 = 10.427 \times 10^{-5} \text{m/s}$

TRIAL HOLE D

Depth	1320mm
Volume 75	2.64m ³
Volume 25	0.81m³

Test

Level (mm)	Elapsed Time (min)
1320	0
1000	4
690	9
300	21
180	30

 $(Ap 50) = 6.55m^2$

 $Vp75-25 = 1.831m^3$

Tp75-25 = 15.5 minutes

Soil Infiltration Rate: F: <u>Vp75-25</u> <u>1.831</u>

Ap50 x tp75-25 = $6.55 \times 15.5 \times 60$ = $30.06 \times 10^{-5} \text{m/s}$

TRIAL HOLE E

Depth	1600mm
Volume 75	3.17m ³
Volume 25	1.06m ³

Test

Level (mm)	Elapsed Time (min)
1650	0
900	16
540	36
350	55

 $(Ap 50) = 8.08m^2$

 $Vp75-25 = 2.112m^3$

Tp75-25 = 44 minutes

Soil Infiltration Rate: F: <u>Vp75-25</u> <u>2.112</u>

 $\frac{1}{100}$ Ap50 x tp75-25 = 8.08 x 44 x 60 = 9.9 x10⁻⁵m/s

Appendix F: Foul Water Drainage - Design Calculations

Page 1
Residential Development
Broomfield,
Midleton, Co. Cork

Page 2
Residential Development
Broomfield,
Midleton, Co. Cork

Node Name	23 3
A3 drawing	
Hor Scale 1500	
Ver Scale 100	
Datum (m) 54.000	
Link Name	2.000
Section Type	150m
Slope (1:X)	59.7
Cover Level (m)	
	66.934 66.934
	66.934
Incomb Level / A	
Invert Level (m)	23.23
	64.823
Length (m)	11.17

Page 3
Residential Development
Broomfield,
Midleton, Co. Cork

Node Name	20 4
A3 drawing	
Hor Scale 1500	
Ver Scale 100	
Datum (m) 53.000	
Link Name	3.000
Section Type	150mm
Slope (1:X)	59.9
Cover Level (m)	
	65.050
	65.
Invert Level (m)	63.029
	9. 0 8. 0 9. 0
	σ σ
Length (m)	40.043
- constant	.0.0.10

Page 4
Residential Development
Broomfield,
Midleton, Co. Cork

Node Name	10 5
	l
A3 drawing	
Hor Scale 1500	
Ver Scale 100	
Datum (m) 53.000	4.000
Link Name	4.000
Section Type Slone (1:Y)	150mm 59.9
Slope (1:X) Cover Level (m)	
	62.570
	69
Invert Level (m)	2220
	61.220
Length (m)	37.088

Page 5
Residential Development
Broomfield,
Midleton, Co. Cork

Node Name	19 8					
A3 drawing						
Hor Scale 1500						
Ver Scale 100						
Datum (m) 51.000	5.000					
Link Name	5.000 150mm					
Section Type Slope (1:X)	60.0					
Cover Level (m)						
	62.230					
	$ \hspace{.04cm} \hspace{.04cm} $					
Invert Level (m)						
	59.854					
Length (m)	40.003					
Length (III)						
Flow+ v10.7 Copyright © 1988-2024 Causeway Technologies Ltd						

Page 6
Residential Development
Broomfield,
Midleton, Co. Cork

Node Name	16 17 18 13 14 15
Noue Name	10 1/ 10 15 14 15
A3 drawing	
Hor Scale 1500	
Ver Scale 100	
Datum (m) 54.000	
Link Name	6.000 6.001 6.002 6.003 6.004
Section Type	150mm 150mm 150mm 150mm 150mm
Slope (1:X)	59.9 59.9 29.4 28.6 149.7
Cover Level (m)	
	66.300
Invert Level (m)	64.940 64.548 64.153 64.114 61.114 60.906
	26 46 46 46 25 25 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Length (m)	23.471 23.664 47.877 40.232 31.131
	Flow+ v10.7 Convright © 1099-2024 Causoway Tochnologies Ltd

Page 7
Residential Development
Broomfield,
Midleton, Co. Cork

Node Name	11 12 13					
A3 drawing						
Hor Scale 1500						
Ver Scale 100						
Datum (m) 55.000	7000					
Link Name	7.000 7.001					
Section Type Slope (1:X)	150mm 150mm 60.0 32.4					
Cover Level (m)						
Cover Level (III)	64.800					
	99 99					
Invert Level (m)						
	65.155					
	63 63					
Length (m)	25.616 41.369					
Length (III)						
Flow+ v10.7 Copyright © 1988-2024 Causeway Technologies Ltd						

Page 8
Residential Development
Broomfield,
Midleton, Co. Cork

Node Name	24 25 26					
<u> </u>						
[
[
[
A3 drawing						
Hor Scale 1500						
Ver Scale 100						
Dotum () 47 000						
Datum (m) 47.000 Link Name	8.000 8.0					
Section Type	150mm 15(
Section Type Slope (1:X)	59.9 16					
Cover Level (m)						
	60.110 60.110 55.000					
Invert Level (m)	55.890 55.277 54.088					
	15.2 8. 25.18.6 16. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.					
Length (m)	36.734 6.2					
Flow+ v10.7 Copyright © 1988-2024 Causeway Technologies Ltd						

File: Broomfield Midleton-RFI.; Network: Foul Network 1 George Forde 26/02/2024 Page 1 Residential Development Broomfield, Midleton, Co. Cork

Design Settings

Frequency of use (kDU) 0.50
Flow per dwelling per day (I/day) 450
Domestic Flow (I/s/ha) 5.3
Industrial Flow (I/s/ha) 0.0
Additional Flow (%) 0

Minimum Velocity (m/s) 0.89
Connection Type Level Soffits
Minimum Backdrop Height (m) 0.200
Preferred Cover Depth (m) 1.200
Include Intermediate Ground ✓

Nodes

Name	Dwellings	Cover Level (m)	Manhole Type	Easting (m)	Northing (m)	Depth (m)
11		66.750	Adoptable	588092.937	575228.383	1.595
3	1	66.934	Adoptable	588130.209	575237.063	4.672
4	21	65.720	Adoptable	588159.436	575198.399	4.266
5	15	63.747	Adoptable	588184.446	575141.667	3.146
6	16	65.833	Adoptable	588129.897	575116.679	5.632
7	15	63.877	Adoptable	588039.965	575120.165	4.276
8	13	62.970	Adoptable	588002.272	575124.987	3.783
9		61.256	Adoptable	587967.881	575129.914	2.301
20		65.050	Adoptable	588196.898	575212.542	1.353
2	6	66.670	Adoptable	588140.339	575254.308	4.074
10		62.570	Adoptable	588218.612	575156.095	1.350
12	3	65.897	Adoptable	588072.615	575212.789	1.169
13	5	64.800	Adoptable	588040.159	575187.138	2.278
14	1	63.610	Adoptable	588010.602	575159.843	2.496
15	5	63.200	Adoptable	588009.889	575128.720	2.294
16		66.700	Adoptable	588112.861	575145.180	1.760
17	4	66.800	Adoptable	588102.195	575166.088	2.252
18	4	66.300	Adoptable	588087.989	575185.013	2.147
19		62.230	Adoptable	588001.762	575084.987	2.376
24		60.110	Adoptable	587960.618	575112.081	4.220
25	8	56.810	Adoptable	587937.237	575083.749	1.772
26		56.000	Adoptable	587930.961	575083.701	1.350
23	1	66.840	Adoptable	588123.475	575245.975	2.017
1		65.370	Adoptable	588177.483	575269.112	2.107

<u>Links</u>

Name			_	ks (mm) / n				•	
7.000	11	12	25.616	1.500	65.155	64.728	0.427	60.0	150
8.000	24	25	36.734	1.500	55.890	55.277	0.613	59.9	150
7.001	12	13	41.369	1.500	64.728	63.450	1.278	32.4	150

Name	Pro Vel @ 1/3 Q (m/s)	Vel (m/s)	Cap (I/s)	Flow (I/s)	US Depth (m)	DS Depth (m)	Σ Area (ha)	Σ Dwellings (ha)	Σ Units (ha)	Σ Add Inflow (ha)	Pro Depth (mm)	Pro Velocity (m/s)	
7.000	0.000	1.132	20.0	0.0	1.445	1.019	0.000	0	0.0	0.0	0	0.000	
8.000	0.000	1.133	20.0	0.0	4.070	1.383	0.000	0	0.0	0.0	0	0.000	
7.001	0.124	1.543	27.3	0.0	1.019	1.200	0.000	3	0.0	0.0	3	0.185	

File: Broomfield Midleton-RFI.; Network: Foul Network 1 George Forde 26/02/2024 Page 2 Residential Development Broomfield, Midleton, Co. Cork

<u>Links</u>

Name	US	DS	Length	ks (mm) /	US IL	DS IL	Fall	Slope	Dia
	Node	Node	(m)	n	(m)	(m)	(m)	(1:X)	(mm)
6.003	13	14	40.232	1.500	62.522	61.114	1.408	28.6	150
6.004	14	15	31.131	1.500	61.114	60.906	0.208	149.7	150
1.000	1	2	39.985	1.500	63.263	62.596	0.667	59.9	150
6.000	16	17	23.471	1.500	64.940	64.548	0.392	59.9	150
6.001	17	18	23.664	1.500	64.548	64.153	0.395	59.9	150
6.002	18	13	47.877	1.500	64.153	62.522	1.631	29.4	150
1.001	2	3	20.000	1.500	62.596	62.262	0.334	59.9	150
1.002	3	4	48.468	1.500	62.262	61.454	0.808	60.0	150
8.001	25	26	6.276	1.500	55.038	54.650	0.388	16.2	150
1.003	4	5	62.000	1.500	61.454	61.040	0.414	149.8	150
1.004	5	6	60.000	1.500	60.601	60.201	0.400	150.0	150
1.005	6	7	90.000	1.500	60.201	59.601	0.600	150.0	150
1.006	7	8	38.000	1.500	59.601	59.187	0.414	91.8	150
1.007	8	9	34.742	1.500	59.187	58.955	0.232	149.8	150
5.000	19	8	40.003	1.500	59.854	59.187	0.667	60.0	150
4.000	10	5	37.088	1.500	61.220	60.601	0.619	59.9	150
3.000	20	4	40.043	1.500	63.697	63.029	0.668	59.9	150
2.000	23	3	11.170	1.500	64.823	64.636	0.187	59.7	150

Name	Pro Vel @ 1/3 Q (m/s)	Vel (m/s)	Cap (I/s)	Flow (I/s)	US Depth (m)	DS Depth (m)	Σ Area (ha)	Σ Dwellings (ha)	Σ Units (ha)	Σ Add Inflow (ha)	Pro Depth (mm)	Pro Velocity (m/s)
6.003	0.226	1.643	29.0	0.1	2.128	2.346	0.000	16	0.0	0.0	6	0.331
6.004	0.131	0.715	12.6	0.1	2.346	2.144	0.000	17	0.0	0.0	9	0.191
1.000	0.000	1.133	20.0	0.0	1.957	3.924	0.000	0	0.0	0.0	0	0.000
6.000	0.000	1.133	20.0	0.0	1.610	2.102	0.000	0	0.0	0.0	0	0.000
6.001	0.113	1.133	20.0	0.0	2.102	1.997	0.000	4	0.0	0.0	4	0.155
6.002	0.164	1.621	28.6	0.0	1.997	2.128	0.000	8	0.0	0.0	4	0.251
1.001	0.134	1.133	20.0	0.0	3.924	4.522	0.000	6	0.0	0.0	5	0.192
1.002	0.134	1.132	20.0	0.0	4.522	4.116	0.000	8	0.0	0.0	6	0.210
8.001	0.222	2.185	38.6	0.0	1.622	1.200	0.000	8	0.0	0.0	4	0.302
1.003	0.162	0.715	12.6	0.2	4.116	2.557	0.000	29	0.0	0.0	12	0.234
1.004	0.181	0.714	12.6	0.2	2.996	5.482	0.000	44	0.0	0.0	14	0.265
1.005	0.208	0.714	12.6	0.3	5.482	4.126	0.000	60	0.0	0.0	17	0.294
1.006	0.256	0.914	16.2	0.4	4.126	3.633	0.000	75	0.0	0.0	16	0.369
1.007	0.234	0.715	12.6	0.5	3.633	2.151	0.000	88	0.0	0.0	20	0.329
5.000	0.000	1.132	20.0	0.0	2.226	3.633	0.000	0	0.0	0.0	0	0.000
4.000	0.000	1.133	20.0	0.0	1.200	2.996	0.000	0	0.0	0.0	0	0.000
3.000	0.000	1.133	20.0	0.0	1.203	2.541	0.000	0	0.0	0.0	0	0.000
2.000	0.065	1.135	20.0	0.0	1.867	2.148	0.000	1	0.0	0.0	2	0.090

File: Broomfield Midleton-RFI.; Network: Foul Network 1 George Forde 26/02/2024 Page 3 Residential Development Broomfield, Midleton, Co. Cork

Pipeline Schedule

Link	Length	Slope	Dia	Link	US CL	US IL	US Depth	DS CL	DS IL	DS Depth
7 000	(m)	(1:X)	(mm)	Type	(m)	(m)	(m)	(m)	(m)	(m)
7.000	25.616	60.0	150	Circular	66.750	65.155	1.445	65.897	64.728	1.019
8.000	36.734	59.9	150	Circular	60.110	55.890	4.070	56.810	55.277	1.383
7.001	41.369	32.4	150	Circular	65.897	64.728	1.019	64.800	63.450	1.200
6.003	40.232	28.6	150	Circular	64.800	62.522	2.128	63.610	61.114	2.346
6.004	31.131	149.7	150	Circular	63.610	61.114	2.346	63.200	60.906	2.144
1.000	39.985	59.9	150	Circular	65.370	63.263	1.957		62.596	3.924
6.000	23.471	59.9	150	Circular	66.700	64.940	1.610		64.548	2.102
6.001	23.664	59.9	150	Circular	66.800	64.548	2.102		64.153	1.997
6.002	47.877	29.4	150	Circular	66.300	64.153	1.997		62.522	2.128
1.001	20.000	59.9	150	Circular	66.670	62.596	3.924		62.262	4.522
1.002	48.468	60.0	150	Circular	66.934	62.262	4.522		61.454	4.116
8.001	6.276	16.2	150	Circular	56.810	55.038	1.622		54.650	1.200
1.003	62.000	149.8	150	Circular	65.720	61.454	4.116	63.747	61.040	2.557
1.004	60.000	150.0	150	Circular	63.747	60.601	2.996	65.833	60.201	5.482
1.005	90.000	150.0	150	Circular	65.833	60.201	5.482	63.877	59.601	4.126
1.006	38.000	91.8	150	Circular	63.877	59.601	4.126	62.970	59.187	3.633
1.007	34.742	149.8	150	Circular	62.970	59.187	3.633	61.256	58.955	2.151
5.000	40.003	60.0	150	Circular	62.230	59.854	2.226	62.970	59.187	3.633
4.000	37.088	59.9	150	Circular	62.570	61.220	1.200	63.747	60.601	2.996
3.000	40.043	59.9	150	Circular	65.050	63.697	1.203		63.029	2.541
2.000	11.170	59.7	150	Circular	66.840	64.823	1.867	66.934	64.636	2.148
	Link	US	Dia	Node	MH	DS	Dia	Node	MH	
		Node	(mm)	Туре	Туре	Node	e (mm)	Туре	Туре	
	7.000					Node				e
		Node	(mm)	Туре	Туре	Node ole 12	e (mm)	Туре	Туре	
	7.000	Node 11	(mm) 1200	Type Manhole	Type Adoptak	Node 12 ble 25	e (mm) 1200	Type Manhole	Type Adoptabl	e
	7.000 8.000	Node 11 24	(mm) 1200 1200	Type Manhole Manhole	Type Adoptak Adoptak	Node 12 ble 25 ble 13	(mm) 1200 1200	Type Manhole Manhole	Type Adoptabl Adoptabl	e e
	7.000 8.000 7.001	Node 11 24 12	(mm) 1200 1200 1200 1200 1200	Type Manhole Manhole Manhole	Type Adoptak Adoptak Adoptak	Node 12 ble 25 ble 13 ble 14	(mm) 1200 1200 1200	Type Manhole Manhole Manhole	Type Adoptabl Adoptabl	e e e
	7.000 8.000 7.001 6.003	Node 11 24 12 13	(mm) 1200 1200 1200 1200 1200	Type Manhole Manhole Manhole Manhole	Adoptak Adoptak Adoptak Adoptak Adoptak Adoptak	Node 12	(mm) 1200 1200 1200 1200	Type Manhole Manhole Manhole	Type Adoptabl Adoptabl Adoptabl Adoptabl Adoptabl Adoptabl Adoptabl	e e e e
	7.000 8.000 7.001 6.003 6.004 1.000 6.000	Node 11 24 12 13 14 1 16	(mm) 1200 1200 1200 1200 1200 1200 1200	Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole	Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab	Node 12 0le 12 0le 25 0le 13 0le 14 0le 15 0le 2 0le 17	(mm) 1200 1200 1200 1200 1200	Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptabl Adoptabl Adoptabl Adoptabl Adoptabl Adoptabl Adoptabl	e e e e e e
	7.000 8.000 7.001 6.003 6.004 1.000 6.000 6.001	Node 11 24 12 13 14 1 16 17	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	Adoptak Adoptak Adoptak Adoptak Adoptak Adoptak Adoptak Adoptak	Node 12 12 13 16 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	1200 1200 1200 1200 1200 1200 1200 1200	Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptabl Adoptabl Adoptabl Adoptabl Adoptabl Adoptabl Adoptabl Adoptabl	e e e e e e e e
	7.000 8.000 7.001 6.003 6.004 1.000 6.000 6.001 6.002	Node 11 24 12 13 14 1 16 17 18	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Manhole	Adoptak Adoptak Adoptak Adoptak Adoptak Adoptak Adoptak Adoptak Adoptak	Node 12 12 13 16 14 15 16 17 16 18 18 11 18	1200 1200 1200 1200 1200 1200 1200 1200	Type Manhole	Adoptable	e e e e e e e e e e
	7.000 8.000 7.001 6.003 6.004 1.000 6.000 6.001 6.002 1.001	Node 11 24 12 13 14 1 16 17 18 2	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole	Adoptak Adoptak Adoptak Adoptak Adoptak Adoptak Adoptak Adoptak Adoptak Adoptak	Node 12 12 18 19 19 19 19 19 19 19 19 19 19 19 19 19	1200 1200 1200 1200 1200 1200 1200 1200	Type Manhole	Adoptable	e e e e e e e e e e
	7.000 8.000 7.001 6.003 6.004 1.000 6.000 6.001 6.002 1.001 1.002	Node 11 24 12 13 14 1 16 17 18 2 3	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole	Adoptak	Node 12 12 16 18 19 19 19 19 19 19 19 19 19 19 19 19 19	1200 1200 1200 1200 1200 1200 1200 1200	Type Manhole	Adoptable	e e e e e e e e e e e
	7.000 8.000 7.001 6.003 6.004 1.000 6.001 6.002 1.001 1.002 8.001	Node 11 24 12 13 14 1 16 17 18 2 3 25	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole	Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab	Node 12 12 18 19 19 19 19 19 19 19 19 19 19 19 19 19	1200 1200 1200 1200 1200 1200 1200 1200	Type Manhole	Adoptable	e e e e e e e e e e e e
	7.000 8.000 7.001 6.003 6.004 1.000 6.000 6.001 6.002 1.001 1.002	Node 11 24 12 13 14 1 16 17 18 2 3	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole	Adoptak	Node 12 12 18 19 19 19 19 19 19 19 19 19 19 19 19 19	1200 1200 1200 1200 1200 1200 1200 1200	Type Manhole	Adoptable	e e e e e e e e e e e e
	7.000 8.000 7.001 6.003 6.004 1.000 6.001 6.002 1.001 1.002 8.001	Node 11 24 12 13 14 1 16 17 18 2 3 25	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole	Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab	Node 12 ble 15 ble 15 ble 17 ble 18 ble 13 ble 3 ble 4 ble 26 ble 5	1200 1200 1200 1200 1200 1200 1200 1200	Type Manhole	Adoptable	
	7.000 8.000 7.001 6.003 6.004 1.000 6.001 6.002 1.001 1.002 8.001 1.003	Node 11 24 12 13 14 1 16 17 18 2 3 25 4	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole	Adoptak Adoptak Adoptak Adoptak Adoptak Adoptak Adoptak Adoptak Adoptak Adoptak Adoptak Adoptak Adoptak	Node 12 12 18 19 19 19 19 19 19 19 19 19 19 19 19 19	1200 1200 1200 1200 1200 1200 1200 1200	Type Manhole	Adoptable	
	7.000 8.000 7.001 6.003 6.004 1.000 6.001 6.002 1.001 1.002 8.001 1.003	Node 11 24 12 13 14 1 16 17 18 2 3 25 4	(mm) 1200 1200 1200 1200 1200 1200 1200 1	Type Manhole	Adoptak	Node 12 12 18 19 19 19 19 19 19 19 19 19 19 19 19 19	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole	Type Adoptabl	
	7.000 8.000 7.001 6.003 6.004 1.000 6.001 6.002 1.001 1.002 8.001 1.003 1.004 1.005 1.006 1.007	Node 11 24 12 13 14 1 16 17 18 2 3 25 4 5 6 7 8	(mm) 1200 1200 1200 1200 1200 1200 1200 1	Type Manhole	Adoptak	Node 12 12 18 19 19 19 19 19 19 19 19 19 19 19 19 19	1200 1200 1200 1200 1200 1200 1200 1200	Type Manhole	Type Adoptabl	
	7.000 8.000 7.001 6.003 6.004 1.000 6.001 6.002 1.001 1.002 8.001 1.003 1.004 1.005 1.006 1.007 5.000	Node 11 24 12 13 14 1 16 17 18 2 3 25 4 5 6 7 8 19	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole	Adoptak	Node 12	(mm) 1200 1200 1200 1200 1200 1200 1200 1	Type Manhole	Type Adoptabl	
	7.000 8.000 7.001 6.003 6.004 1.000 6.001 6.002 1.001 1.002 8.001 1.003 1.004 1.005 1.006 1.007 5.000 4.000	Node 11 24 12 13 14 1 16 17 18 2 3 25 4 5 6 7 8 19 10	(mm) 1200 1200 1200 1200 1200 1200 1200 1	Type Manhole	Adoptak	Node 12 12 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole	Type Adoptabl	
	7.000 8.000 7.001 6.003 6.004 1.000 6.001 6.002 1.001 1.002 8.001 1.003 1.004 1.005 1.006 1.007 5.000	Node 11 24 12 13 14 1 16 17 18 2 3 25 4 5 6 7 8 19	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole	Adoptak	Node 12 12 18 18 19 18 19 18 19 18 19 18 19 18 19 18 19 18 19 19 18 19 19 19 19 19 19 19 19 19 19 19 19 19	(mm) 1200 1200 1200 1200 1200 1200 1200 1	Type Manhole	Type Adoptabl	

File: Broomfield Midleton-RFI.; Network: Foul Network 1 George Forde 26/02/2024 Page 4
Residential Development
Broomfield,
Midleton, Co. Cork

Manhole Schedule

Node	Easting	Northing	CL	Depth	Dia	Connections	Link	IL	Dia
Noue	(m)	(m)	(m)	(m)	(mm)	Connections	LIIIK	(m)	(mm)
11	588092.937	575228.383	66.750	1.595	1200			,	
	F99130 300	F7F227 062	66.024	4.672	1200	0	7.000	65.155	150
3	588130.209	575237.063	66.934	4.672	1200	1 2 2	2.000	64.636 62.262	150 150
							1.001	02.202	150
						, o	1.002	62.262	150
4	588159.436	575198.399	65.720	4.266	1200	2 1	3.000	63.029	150
						1 2	1.002	61.454	150
						\mathcal{L}			
						, O	1.003	61.454	150
5	588184.446	575141.667	63.747	3.146	1200	2 1	4.000	60.601	150
						1 2	1.003	61.040	150
						0 0	1.004	60.601	150
6	588129.897	575116.679	65.833	5.632	1200	1	1.004	60.201	150
Ü	300123.037	3,3110.0,3	03.033	3.032	1200		1.004	00.201	130
						0 ←			
						0	1.005	60.201	150
7	588039.965	575120.165	63.877	4.276	1200	1	1.005	59.601	150
						0 ← 1			
							4.000	E0 604	450
8	F00002 272	F7F124 007	62.070	2 702	1200	0	1.006	59.601	150
0	588002.272	575124.987	62.970	3.783	1200	$\begin{array}{c c} & 1 \\ 2 & \end{array}$	5.000	59.187 59.187	150 150
						0 ← 2	1.000	33.107	130
						1 0	1.007	59.187	150
9	587967.881	575129.914	61.256	2.301	1200	1	1.007	58.955	150
	500105 000	575040 540	CE 050	4.050	4000				
20	588196.898	575212.542	65.050	1.353	1200				
						0	3.000	63.697	150
2	588140.339	575254.308	66.670	4.074	1200	1	1.000	62.596	150
						0 0	1.001	62.596	150
10	588218.612	575156.095	62.570	1.350	1200	_			
						0	4.000	61.220	150
12	588072.615	575212.789	65.897	1.169	1200	1	7.000	64.728	150
						0	7.001	64.728	150
13	588040.159	575187.138	64.800	2.278	1200	1	7.001	63.450	150
						2	6.002	62.522	150
						0	6.002	62 522	150
						ı	6.003	62.522	150

File: Broomfield Midleton-RFI.; Network: Foul Network 1 George Forde 26/02/2024 Page 5 Residential Development Broomfield, Midleton, Co. Cork

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections		Link	IL (m)	Dia (mm)
14	588010.602	575159.843	63.610	2.496	1200		1	6.003	61.114	150
							0	6.004	61.114	150
15	588009.889	575128.720	63.200	2.294	1200		1	6.004	60.906	150
16	588112.861	575145.180	66.700	1.760	1200	•				
							0	6.000	64.940	150
17	588102.195	575166.088	66.800	2.252	1200		1	6.000	64.548	150
						1	0	6.001	64.548	150
18	588087.989	575185.013	66.300	2.147	1200	0 ←	1	6.001	64.153	150
						1	0	6.002	64.153	150
19	588001.762	575084.987	62.230	2.376	1200					
							0	5.000	59.854	150
24	587960.618	575112.081	60.110	4.220	1200					
							0	8.000	55.890	150
25	587937.237	575083.749	56.810	1.772	1200	0 ← 1	1	8.000	55.277	150
							0	8.001	55.038	150
26	587930.961	575083.701	56.000	1.350	1200	1	1	8.001	54.650	150
23	588123.475	575245.975	66.840	2.017	1200					
							0	2.000	64.823	150
1	588177.483	575269.112	65.370	2.107	1200		0	2.000	04.823	150
1	J001/7.405	3/3203.112	03.370	2.10/	1200	0				
							0	1.000	63.263	150

Simulation Settings

Analysis Speed Normal Drain Down Time (mins) 240
Skip Steady State ✓ Foul Event Duration (mins) 60

Storm Durations

15 30 60 120 180 240 360 480 600 720 960 1440

File: Broomfield Midleton-RFI.; Network: Foul Network 1 George Forde

26/02/2024

Residential Development Broomfield, Midleton, Co. Cork

Page 6

Pre-development Discharge Rate

Site Makeup	Greenfield	Growth Factor 30 year	1.65
Greenfield Method	IH124	Growth Factor 100 year	1.96
Positively Drained Area (ha)	7.950	Betterment (%)	0
SAAR (mm)	1091	QBar	24.4
Soil Index	2	Q 1 year (I/s)	20.2
SPR	0.30	Q 30 year (I/s)	40.2
Region	11	Q 100 year (I/s)	47.7
Growth Factor 1 year	0.83		

Pre-development Discharge Volume

Site Makeu	р	Greenfield	Return Period (years)	100
Greenfield Metho	d	FSR/FEH	Climate Change (%)	0
sitively Drained Area (h	a)	7.950	Storm Duration (mins)	360
Soil Inde	ex	2	Betterment (%)	0
SP	'R	0.30	PR	0.341
CV	۷I	125.228	Runoff Volume (m³)	1702

File: Broomfield Midleton-RFI.; Network: Foul Network 1 George Forde 26/02/2024 Page 7 Residential Development Broomfield, Midleton, Co. Cork

Results for Foul Event Critical Storm Duration. Lowest mass balance: 90.07%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
Foul Event	11	1	65.155	0.000	0.0	0.0000	0.0000	OK
Foul Event	3	1	62.262	0.000	0.0	0.0000	0.0000	OK
Foul Event	4	59	61.464	0.010	0.1	0.0113	0.0000	OK
Foul Event	5	59	60.614	0.013	0.2	0.0151	0.0000	OK
Foul Event	6	59	60.217	0.016	0.3	0.0182	0.0000	OK
Foul Event	7	59	59.617	0.016	0.4	0.0186	0.0000	OK
Foul Event	8	61	59.272	0.085	0.7	0.0957	0.0000	OK
Foul Event	9	61	59.273	0.318	0.5	0.3596	0.0000	OK
Foul Event	20	1	63.697	0.000	0.0	0.0000	0.0000	OK
Foul Event	2	1	62.596	0.000	0.0	0.0000	0.0000	OK
Foul Event	10	1	61.220	0.000	0.0	0.0000	0.0000	OK
Foul Event	12	1	64.728	0.000	0.0	0.0000	0.0000	OK
Foul Event	13	1	62.522	0.000	0.0	0.0000	0.0000	OK
Foul Event	14	1	61.114	0.000	0.0	0.0000	0.0000	OK
Foul Event	15	1	60.906	0.000	0.0	0.0000	0.0000	OK
Foul Event	16	1	64.940	0.000	0.0	0.0000	0.0000	OK
Foul Event	17	1	64.548	0.000	0.0	0.0000	0.0000	OK
Foul Event	18	1	64.153	0.000	0.0	0.0000	0.0000	OK
Foul Event	19	1	59.854	0.000	0.0	0.0000	0.0000	OK
Foul Event	24	1	55.890	0.000	0.0	0.0000	0.0000	OK
Foul Event	25	1	55.038	0.000	0.0	0.0000	0.0000	OK
Foul Event	26	1	54.650	0.000	0.0	0.0000	0.0000	OK
Foul Event	23	1	64.823	0.000	0.0	0.0000	0.0000	OK
Foul Event	1	1	63.263	0.000	0.0	0.0000	0.0000	OK

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
Foul Event	11	7.000	12	0.0	0.000	0.000	0.0000	, ,
Foul Event	3	1.002	4	0.0	0.000	0.000	0.0121	
Foul Event	4	1.003	5	0.1	0.227	0.008	0.0274	
Foul Event	5	1.004	6	0.2	0.226	0.016	0.0532	
Foul Event	6	1.005	7	0.3	0.292	0.024	0.0924	
Foul Event	7	1.006	8	0.4	0.322	0.025	0.2135	
Foul Event	8	1.007	9	0.5	0.264	0.039	0.4835	0.0
Foul Event	20	3.000	4	0.0	0.000	0.000	0.0000	
Foul Event	2	1.001	3	0.0	0.000	0.000	0.0000	
Foul Event	10	4.000	5	0.0	0.000	0.000	0.0141	
Foul Event	12	7.001	13	0.0	0.000	0.000	0.0000	
Foul Event	13	6.003	14	0.0	0.000	0.000	0.0000	
Foul Event	14	6.004	15	0.0	0.000	0.000	0.0000	0.0
Foul Event	16	6.000	17	0.0	0.000	0.000	0.0000	
Foul Event	17	6.001	18	0.0	0.000	0.000	0.0000	
Foul Event	18	6.002	13	0.0	0.000	0.000	0.0000	
Foul Event	19	5.000	8	0.0	0.000	0.000	0.2047	
Foul Event	24	8.000	25	0.0	0.000	0.000	0.0000	
Foul Event	25	8.001	26	0.0	0.000	0.000	0.0000	0.0
Foul Event	23	2.000	3	0.0	0.000	0.000	0.0000	
Foul Event	1	1.000	2	0.0	0.000	0.000	0.0000	

Page 1
Residential Development
Broomfield,
Midleton, Co. Cork

Page 2
Residential Development
Broomfield,
Midleton, Co. Cork

Page 3
Residential Development
Broomfield,
Midleton, Co. Cork

Node Name	61 34
A3 drawing	
Hor Scale 1500	
Ver Scale 100	
Datum (m) 48.000	
Link Name	2.0
Section Type Slope (1:X) Cover Level (m)	15C 16. 08 CS
Cover Level (m)	10.
Cover Lever (III)	$\left egin{array}{c} ec{\omega} & ec{\omega} \\ ec{\omega} & ec{\omega} \end{array} \right rac{ec{\omega}}{\omega}$
	8 29
Invert Level (m)	
ilivert Level (III)	
	98 99 98
Longth (m)	
Length (m)	7.4

Page 4
Residential Development
Broomfield,
Midleton, Co. Cork

Node Name	57 35
A2 drawing	
A3 drawing	
Hor Cools 1500	
Hor Scale 1500	
Ver Scale 100	
, , ,	
Datum (m) 44.000	
Link Name	3.000
Section Type	150mm
Slope (1:X)	24.5
Cover Level (m)	111
	55.511
	$ \widetilde{\mathfrak{Z}} $
Invert Level (m)	
miver Level (III)	54.225
	21.
	60,000
Length (m)	68.999

Page 5
Residential Development
Broomfield,
Midleton, Co. Cork

Page 6
Residential Development
Broomfield,
Midleton, Co. Cork

Page 7
Residential Development
Broomfield,
Midleton, Co. Cork

Node Name	58 44
[]	
[
A3 drawing	
Hor Scale 1500	
Hor Scale 1500 Ver Scale 100	
vei 2cale 100	
Datum (m) 29.000	
Link Name	6.000
Section Type	150mm
Section Type Slope (1:X)	23.9
Cover Level (m)	
	37.153
	$\frac{8}{37}$
Invert Level (m)	
	35.503
	89 9.
Longth (m)	
Length (m)	91.143
	Flow+ v10.7 Copyright © 1988-2024 Causeway Technologies Ltd

Page 8
Residential Development
Broomfield,
Midleton, Co. Cork

Node Name	59 46
Node Name	
A3 drawing	
<u> </u>	
Hor Scale 1500	
/er Scale 100	
Datum (m) 25.000	
Link Name	7.000
Section Type Slope (1:X)	150mm
Slope (1:X)	18.4
Cover Level (m)	39.120
	39.120
Invert Level (m)	12
	34.512
	$\frac{3}{6}$
Length (m)	68.582
- '0*** ***/	
	Flow+ v10.7 Copyright © 1988-2024 Causeway Technologies Ltd

Page 9
Residential Development
Broomfield,
Midleton, Co. Cork

Node Name	60 47
A3 drawing	
Hor Scale 1500	
Ver Scale 100	
VEL JUBIE 100	
Datum (m) 23.000	
Link Name	8.000
Section Type	100mm
Slope (1:X)	40.0
Section Type Slope (1:X) Cover Level (m)	0 0
	36.330
	3.3
Invert Level (m)	30.627
	90
	30
Length (m)	74.098

File: Broomfield Midleton-RFI.; Network: Foul Network 2 George Forde 26/02/2024 Page 1 Residential Development Broomfield, Midleton, Co. Cork

Design Settings

Frequency of use (kDU) 0.50
Flow per dwelling per day (I/day) 450
Domestic Flow (I/s/ha) 5.3
Industrial Flow (I/s/ha) 0.0
Additional Flow (%) 0

Minimum Velocity (m/s) 0.89
Connection Type Level Soffits
Minimum Backdrop Height (m) 0.200
Preferred Cover Depth (m) 1.500
Include Intermediate Ground ✓

Nodes

Name	Dwellings	Cover Level (m)	Manhole Type	Easting (m)	Northing (m)	Depth (m)
32	1	61.764	Adoptable	588150.429	575048.425	3.373
33	3	61.464	Adoptable	588164.443	575053.776	3.399
34	14	59.550	Adoptable	588237.911	575089.548	3.528
35	13	55.511	Adoptable	588250.452	575063.399	4.104
36		53.610	Adoptable	588269.495	575000.729	3.928
37	12	52.070	Adoptable	588198.363	574975.127	3.111
38	2	51.810	Adoptable	588188.347	574976.763	3.731
39	6	50.934	Adoptable	588145.886	574962.362	4.804
40	11	48.320	Adoptable	588055.897	574963.760	3.621
41	7	46.622	Adoptable	588009.891	574963.569	3.414
42	3	45.000	Adoptable	587981.228	574959.274	2.001
43	11	40.698	Adoptable	587907.335	574948.201	1.650
45		35.390	Adoptable	587905.722	574909.488	1.650
46	10	35.570	Adoptable	587927.735	574902.802	4.795
47	10	33.460	Adoptable	587924.098	574867.616	3.456
48		31.817	Adoptable	587900.895	574870.722	2.996
49		30.400	Adoptable	587885.297	574865.858	1.688
57	1	56.557	Adoptable	588184.966	575041.663	2.332
50		61.464	Adoptable	588093.554	575049.311	3.123
51	10	59.450	Adoptable	588026.590	575051.505	3.603
52	8	52.380	Adoptable	588021.688	575031.630	2.394
53	1	51.280	Adoptable	588015.761	575000.296	2.357
54		56.360	Adoptable	588176.393	575047.609	1.907
55	7	55.430	Adoptable	588132.695	575031.184	1.742
56	8	53.776	Adoptable	588082.529	575030.751	1.650
61	2	59.380	Adoptable	588244.478	575093.068	2.897
58		42.000	Adoptable	587996.500	574927.799	2.682
60		36.330	Adoptable	587997.547	574877.404	3.850
59		39.120	Adoptable	587995.825	574911.002	4.608
44	14	37.153	Adoptable	587906.026	574916.774	1.650
63		56.473	Adoptable	588024.641	575040.481	6.301

File: Broomfield Midleton-RFI.; Network: Foul Network 2 George Forde 26/02/2024 Page 2 Residential Development Broomfield, Midleton, Co. Cork

<u>Links</u>

Name	US	DS	Length	ks (mm) /	US IL	DS IL	Fall	Slope	Dia
	Node	Node	(m)	n	(m)	(m)	(m)	(1:X)	(mm)
5.000	50	51	67.000	1.500	58.341	55.847	2.494	26.9	150
1.000	32	33	15.001	1.500	58.391	58.065	0.326	46.0	150
1.001	33	34	81.714	1.500	58.065	56.022	2.043	40.0	150
3.000	57	35	68.999	1.500	54.225	51.407	2.818	24.5	150
6.000	58	44	91.143	1.500	39.318	35.503	3.815	23.9	150
1.012	44	45	7.292	1.500	35.503	33.740	1.763	4.1	150
1.002	34	35	29.001	1.500	56.022	53.861	2.161	13.4	150
1.003	35	36	65.499	1.500	51.407	49.682	1.726	38.0	150
1.004	36	37	75.599	1.500	49.682	48.959	0.722	104.7	150
1.005	37	38	10.149	1.500	48.959	48.079	0.880	11.5	150
4.003	52	53	31.890	1.500	49.986	48.923	1.063	30.0	150
1.006	38	39	44.837	1.500	48.079	46.130	1.949	23.0	150
1.007	39	40	90.000	1.500	46.130	44.699	1.431	62.9	150
1.013	45	46	23.006	1.500	33.740	33.586	0.154	149.4	150
4.001	55	56	50.168	1.500	53.688	52.126	1.562	32.1	150
1.008	40	41	46.006	1.500	44.699	43.208	1.491	30.9	150
1.009	41	42	28.983	1.500	43.208	42.999	0.209	138.8	150
1.010	42	43	74.718	1.500	42.999	39.048	3.951	18.9	150
1.011	43	44	31.454	1.500	39.048	35.503	3.545	8.9	150
2.000	61	34	7.451	1.500	56.483	56.022	0.461	16.2	150
4.000	54	55	46.683	1.500	54.453	53.688	0.765	61.0	150
4.002	56	52	60.847	1.500	52.126	50.730	1.396	43.6	150
8.000	60	47	74.098	1.500	32.480	30.627	1.853	40.0	100

Name	Pro Vel @ 1/3 Q (m/s)	Vel (m/s)	Cap (I/s)	Flow (I/s)	US Depth (m)	DS Depth (m)	Σ Area (ha)	Σ Dwellings (ha)	Σ Units (ha)	Σ Add Inflow (ha)	Pro Depth (mm)	Pro Velocity (m/s)
5.000	0.000	1.694	29.9	0.0	2.973	3.453	0.000	0	0.0	0.0	0	0.000
1.000	0.075	1.293	22.8	0.0	3.223	3.249	0.000	1	0.0	0.0	2	0.103
1.001	0.111	1.388	24.5	0.0	3.249	3.378	0.000	4	0.0	0.0	4	0.190
3.000	0.104	1.775	31.4	0.0	2.182	3.954	0.000	1	0.0	0.0	2	0.144
6.000	0.000	1.797	31.8	0.0	2.532	1.500	0.000	0	0.0	0.0	0	0.000
1.012	0.878	4.326	76.5	0.7	1.500	1.500	0.000	134	0.0	0.0	10	1.280
1.002	0.332	2.400	42.4	0.1	3.378	1.500	0.000	20	0.0	0.0	6	0.449
1.003	0.265	1.425	25.2	0.2	3.954	3.778	0.000	34	0.0	0.0	9	0.384
1.004	0.195	0.856	15.1	0.2	3.778	2.961	0.000	34	0.0	0.0	12	0.281
1.005	0.445	2.589	45.8	0.2	2.961	3.581	0.000	46	0.0	0.0	8	0.633
4.003	0.299	1.603	28.3	0.2	2.244	2.207	0.000	33	0.0	0.0	8	0.412
1.006	0.369	1.832	32.4	0.3	3.581	4.654	0.000	48	0.0	0.0	10	0.517
1.007	0.268	1.106	19.5	0.3	4.654	3.471	0.000	54	0.0	0.0	13	0.376
1.013	0.266	0.716	12.6	0.7	1.500	1.834	0.000	134	0.0	0.0	24	0.379
4.001	0.156	1.549	27.4	0.0	1.592	1.500	0.000	7	0.0	0.0	4	0.239
1.008	0.363	1.581	27.9	0.3	3.471	3.264	0.000	65	0.0	0.0	12	0.521
1.009	0.252	0.742	13.1	0.6	3.264	1.851	0.000	106	0.0	0.0	21	0.362
1.010	0.493	2.021	35.7	0.6	1.851	1.500	0.000	109	0.0	0.0	13	0.712
1.011	0.682	2.952	52.2	0.6	1.500	1.500	0.000	120	0.0	0.0	12	0.977
2.000	0.130	2.186	38.6	0.0	2.747	3.378	0.000	2	0.0	0.0	2	0.178
4.000	0.000	1.122	19.8	0.0	1.757	1.592	0.000	0	0.0	0.0	0	0.000
4.002	0.205	1.329	23.5	0.1	1.500	1.500	0.000	15	0.0	0.0	7	0.286
8.000	0.000	1.054	8.3	0.0	3.750	2.733	0.000	0	0.0	0.0	0	0.000

File: Broomfield Midleton-RFI.; Network: Foul Network 2 George Forde 26/02/2024 Page 3 Residential Development Broomfield, Midleton, Co. Cork

<u>Links</u>

Name	US	DS	Length	ks (mm) /	US IL	DS IL	Fall	Slope	Dia
	Node	Node	(m)	n	(m)	(m)	(m)	(1:X)	(mm)
1.014	46	47	35.373	1.500	30.775	30.004	0.771	45.9	150
7.000	59	46	68.582	1.500	34.512	30.775	3.737	18.4	150
5.001	51	63	11.195	1.500	55.847	55.623	0.224	50.0	150
5.002	63	52	9.331	1.500	50.172	49.986	0.186	50.2	150
1.015	47	48	23.410	1.500	30.004	28.821	1.183	19.8	150
4.004	53	41	37.193	1.500	48.923	44.972	3.951	9.4	150
1.016	48	49	16.339	1.500	28.821	28.712	0.109	149.9	150

Name	Pro Vel	Vel	Cap	Flow	US	DS	Σ Area	Σ Dwellings	Σ Units	Σ Add	Pro	Pro
	@ 1/3 Q	(m/s)	(I/s)	(I/s)	Depth	Depth	(ha)	(ha)	(ha)	Inflow	Depth	Velocity
	(m/s)				(m)	(m)				(ha)	(mm)	(m/s)
1.014	0.412	1.295	22.9	0.8	4.645	3.306	0.000	144	0.0	0.0	19	0.586
7.000	0.000	2.051	36.2	0.0	4.458	4.645	0.000	0	0.0	0.0	0	0.000
5.001	0.170	1.241	21.9	0.1	3.453	0.700	0.000	10	0.0	0.0	6	0.230
5.002	0.169	1.239	21.9	0.1	6.151	2.244	0.000	10	0.0	0.0	6	0.230
1.015	0.558	1.975	34.9	0.8	3.306	2.846	0.000	154	0.0	0.0	16	0.800
4.004	0.446	2.866	50.6	0.2	2.207	1.500	0.000	34	0.0	0.0	7	0.622
1.016	0.280	0.714	12.6	0.8	2.846	1.538	0.000	154	0.0	0.0	26	0.396

Pipeline Schedule

Link	Length	Slope	Dia	Link	US CL	US IL	US Depth	DS CL	DS IL	DS Depth
	(m)	(1:X)	(mm)	Type	(m)	(m)	(m)	(m)	(m)	(m)
5.000	67.000	26.9	150	Circular	61.464	58.341	2.973	59.450	55.847	3.453
1.000	15.001	46.0	150	Circular	61.764	58.391	3.223	61.464	58.065	3.249
1.001	81.714	40.0	150	Circular	61.464	58.065	3.249	59.550	56.022	3.378
3.000	68.999	24.5	150	Circular	56.557	54.225	2.182	55.511	51.407	3.954
6.000	91.143	23.9	150	Circular	42.000	39.318	2.532	37.153	35.503	1.500
1.012	7.292	4.1	150	Circular	37.153	35.503	1.500	35.390	33.740	1.500
1.002	29.001	13.4	150	Circular	59.550	56.022	3.378	55.511	53.861	1.500
1.003	65.499	38.0	150	Circular	55.511	51.407	3.954	53.610	49.682	3.778
1.004	75.599	104.7	150	Circular	53.610	49.682	3.778	52.070	48.959	2.961
1.005	10.149	11.5	150	Circular	52.070	48.959	2.961	51.810	48.079	3.581
4.003	31.890	30.0	150	Circular	52.380	49.986	2.244	51.280	48.923	2.207

Link	US	Dia	Node	MH	DS	Dia	Node	MH
	Node	(mm)	Type	Туре	Node	(mm)	Type	Type
5.000	50	1200	Manhole	Adoptable	51	1200	Manhole	Adoptable
1.000	32	1200	Manhole	Adoptable	33	1200	Manhole	Adoptable
1.001	33	1200	Manhole	Adoptable	34	1200	Manhole	Adoptable
3.000	57	1200	Manhole	Adoptable	35	1200	Manhole	Adoptable
6.000	58	1200	Manhole	Adoptable	44	1200	Manhole	Adoptable
1.012	44	1200	Manhole	Adoptable	45	1200	Manhole	Adoptable
1.002	34	1200	Manhole	Adoptable	35	1200	Manhole	Adoptable
1.003	35	1200	Manhole	Adoptable	36	1200	Manhole	Adoptable
1.004	36	1200	Manhole	Adoptable	37	1200	Manhole	Adoptable
1.005	37	1200	Manhole	Adoptable	38	1200	Manhole	Adoptable
4.003	52	1200	Manhole	Adoptable	53	1200	Manhole	Adoptable

File: Broomfield Midleton-RFI.; Network: Foul Network 2 George Forde 26/02/2024 Page 4
Residential Development
Broomfield,
Midleton, Co. Cork

Pipeline Schedule

Link	Length (m)	Slope (1:X)	Dia (mm)	Link Type	US CL (m)	US IL (m)	US Depth (m)	DS CL (m)	DS IL (m)	DS Depth (m)
1.006	44.837	23.0	150	Circular	51.810	48.079	3.581	50.934	46.130	4.654
1.007	90.000	62.9	150	Circular	50.934	46.130	4.654	48.320	44.699	3.471
1.013	23.006	149.4	150	Circular	35.390	33.740	1.500	35.570	33.586	1.834
4.001	50.168	32.1	150	Circular	55.430	53.688	1.592	53.776	52.126	1.500
1.008	46.006	30.9	150	Circular	48.320	44.699	3.471	46.622	43.208	3.264
1.009	28.983	138.8	150	Circular	46.622	43.208	3.264	45.000	42.999	1.851
1.010	74.718	18.9	150	Circular	45.000	42.999	1.851	40.698	39.048	1.500
1.011	31.454	8.9	150	Circular	40.698	39.048	1.500	37.153	35.503	1.500
2.000	7.451	16.2	150	Circular	59.380	56.483	2.747	59.550	56.022	3.378
4.000	46.683	61.0	150	Circular	56.360	54.453	1.757	55.430	53.688	1.592
4.002	60.847	43.6	150	Circular	53.776	52.126	1.500	52.380	50.730	1.500
8.000	74.098	40.0	100	Circular	36.330	32.480	3.750	33.460	30.627	2.733
1.014	35.373	45.9	150	Circular	35.570	30.775	4.645	33.460	30.004	3.306
7.000	68.582	18.4	150	Circular	39.120	34.512	4.458	35.570	30.775	4.645
5.001	11.195	50.0	150	Circular	59.450	55.847	3.453	56.473	55.623	0.700
5.002	9.331	50.2	150	Circular	56.473	50.172	6.151	52.380	49.986	2.244
1.015	23.410	19.8	150	Circular	33.460	30.004	3.306	31.817	28.821	2.846
4.004	37.193	9.4	150	Circular	51.280	48.923	2.207	46.622	44.972	1.500
1.016	16.339	149.9	150	Circular	31.817	28.821	2.846	30.400	28.712	1.538
	Link	US Node	Dia	Node	MH	DS Node	Dia	Node	MH	
		Node	(mm)	Type	Туре	Node	e (mm)	Туре	Туре	۵
	1.006	Node 38	(mm) 1200	Type Manhole	Type Adoptab	Node	e (mm) 1200	Type Manhole	Type Adoptabl	
	1.006 1.007	Node 38 39	(mm) 1200 1200	Type Manhole Manhole	Type Adoptab Adoptab	Node ole 39 ole 40	e (mm) 1200 1200	Type Manhole Manhole	Type Adoptabl Adoptabl	e
	1.006 1.007 1.013	Node 38 39 45	(mm) 1200 1200 1200	Type Manhole Manhole Manhole	Type Adoptab Adoptab Adoptab	Node ole 39 ole 40 ole 46	1200 1200 1200	Type Manhole Manhole Manhole	Type Adoptabl Adoptabl Adoptabl	e e
	1.006 1.007 1.013 4.001	Node 38 39 45 55	(mm) 1200 1200 1200 1200	Type Manhole Manhole Manhole Manhole	Type Adoptab Adoptab Adoptab Adoptab	Node ble 39 ble 40 ble 46 ble 56	(mm) 1200 1200 1200 1200	Type Manhole Manhole Manhole Manhole	Type Adoptabl Adoptabl Adoptabl Adoptabl	e e e
	1.006 1.007 1.013 4.001 1.008	Node 38 39 45 55	(mm) 1200 1200 1200 1200 1200	Type Manhole Manhole Manhole Manhole	Type Adoptab Adoptab Adoptab Adoptab Adoptab	Node ble 39 ble 40 ble 46 ble 56 ble 41	(mm) 1200 1200 1200 1200 1200	Type Manhole Manhole Manhole Manhole Manhole	Type Adoptabl Adoptabl Adoptabl Adoptabl Adoptabl	e e e
	1.006 1.007 1.013 4.001 1.008 1.009	Node 38 39 45 55 40 41	(mm) 1200 1200 1200 1200 1200 1200 1200	Type Manhole Manhole Manhole Manhole Manhole	Type Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab	Node 39 ble 40 ble 46 ble 56 ble 41 ble 42	(mm) 1200 1200 1200 1200 1200 1200	Type Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptabl Adoptabl Adoptabl Adoptabl Adoptabl Adoptabl	e e e e
	1.006 1.007 1.013 4.001 1.008	Node 38 39 45 55	(mm) 1200 1200 1200 1200 1200	Type Manhole Manhole Manhole Manhole	Type Adoptab Adoptab Adoptab Adoptab Adoptab	Node ole 39 ole 40 ole 46 ole 56 ole 41 ole 42 ole 43	(mm) 1200 1200 1200 1200 1200	Type Manhole Manhole Manhole Manhole Manhole	Type Adoptabl Adoptabl Adoptabl Adoptabl Adoptabl	e e e e e
	1.006 1.007 1.013 4.001 1.008 1.009 1.010 1.011	Node 38 39 45 55 40 41 42 43	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab	Node ole 39 ole 40 ole 46 ole 56 ole 41 ole 42 ole 43 ole 44	(mm) 1200 1200 1200 1200 1200 1200 1200 1200 1200	Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptabl Adoptabl Adoptabl Adoptabl Adoptabl Adoptabl Adoptabl Adoptabl	e e e e e e e
	1.006 1.007 1.013 4.001 1.008 1.009 1.010 1.011 2.000 4.000	Node 38 39 45 55 40 41 42 43	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole Manhole	Type Adoptab	Node ole 39 ole 40 ole 46 ole 56 ole 41 ole 42 ole 43 ole 44	(mm) 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200	Type Manhole	Type Adoptabl	e e e e e e e e e e
	1.006 1.007 1.013 4.001 1.008 1.009 1.010 1.011 2.000 4.000 4.000	Node 38 39 45 55 40 41 42 43 61 54 56	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole	Type Adoptab	Node ole 39 ole 40 ole 46 ole 56 ole 41 ole 42 ole 43 ole 44	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole	Type Adoptabl	e e e e e e e e e e e
	1.006 1.007 1.013 4.001 1.008 1.009 1.010 1.011 2.000 4.000 4.000 8.000	Node 38 39 45 55 40 41 42 43 61 54 56 60	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole	Type Adoptab	Node 39 ole 40 ole 46 ole 56 ole 41 ole 42 ole 43 ole 44 ole 55 ole 55 ole 52 ole 47	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole	Type Adoptabl	e e e e e e e e e e
	1.006 1.007 1.013 4.001 1.008 1.009 1.010 1.011 2.000 4.000 4.000 4.002 8.000 1.014	Node 38 39 45 55 40 41 42 43 61 54 66 60 46	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole	Type Adoptab	Node 39 ole 40 ole 46 ole 56 ole 41 ole 42 ole 43 ole 44 ole 55 ole 52 ole 47 ole 47	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole	Type Adoptabl	e e e e e e e e e e e e
	1.006 1.007 1.013 4.001 1.008 1.009 1.010 1.011 2.000 4.000 4.000 4.002 8.000 1.014 7.000	Node 38 39 45 55 40 41 42 43 61 54 56 60 46 59	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole	Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab Adoptab	Node Node Section S	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole	Type Adoptabl	
	1.006 1.007 1.013 4.001 1.008 1.009 1.010 1.011 2.000 4.000 4.002 8.000 1.014 7.000 5.001	Node 38 39 45 55 40 41 42 43 61 54 56 60 46 59 51	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole	Type Adoptab	Node 39 0le 40 0le 46 0le 56 0le 41 0le 42 0le 43 0le 44 0le 55 0le 47 0le 47 0le 46 0le 63	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole	Type Adoptabl	
	1.006 1.007 1.013 4.001 1.008 1.009 1.010 1.011 2.000 4.000 4.002 8.000 1.014 7.000 5.001 5.002	Node 38 39 45 55 40 41 42 43 61 54 56 60 46 59 51 63	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole	Type Adoptab	Node 39 ole 40 ole 46 ole 56 ole 41 ole 42 ole 43 ole 44 ole 55 ole 52 ole 47 ole 47 ole 63 ole 52	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole	Type Adoptabl	
	1.006 1.007 1.013 4.001 1.008 1.009 1.010 1.011 2.000 4.000 4.002 8.000 1.014 7.000 5.001	Node 38 39 45 55 40 41 42 43 61 54 56 60 46 59 51	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole	Type Adoptab	Node 39 ole 40 ole 46 ole 56 ole 41 ole 42 ole 43 ole 44 ole 55 ole 52 ole 47 ole 47 ole 63 ole 52	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole	Type Adoptabl	
	1.006 1.007 1.013 4.001 1.008 1.009 1.010 1.011 2.000 4.000 4.002 8.000 1.014 7.000 5.001 5.002	Node 38 39 45 55 40 41 42 43 61 54 56 60 46 59 51 63	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole	Type Adoptab	Node Node Section S	(mm) 1200 1200 1200 1200 1200 1200 1200 120	Type Manhole	Type Adoptabl	

File: Broomfield Midleton-RFI.; Network: Foul Network 2 George Forde 26/02/2024 Page 5 Residential Development Broomfield, Midleton, Co. Cork

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	Link	IL (m)	Dia (mm)
32	588150.429	575048.425	61.764	3.373	1200			(m)	(mm)
32	388130.423	373048.423	01.704	3.373	1200	→ 0			
							4 000	E0 204	450
33	588164.443	575053.776	61.464	3.399	1200	0	1.000	58.391 58.065	150 150
33	300104.443	3/3033.776	01.404	5.599	1200	70	1.000	36.003	130
						1			
						0	1.001	58.065	150
34	588237.911	575089.548	59.550	3.528	1200	1	2.000	56.022	150
						2	1.001	56.022	150
						0 0	1.002	56.022	150
35	588250.452	575063.399	55.511	4.104	1200	2, 1	3.000	51.407	150
						2	1.002	53.861	150
						1			
26	E00360 40E	575000 730	F2 C40	2.020	1200	ŏ 0	1.003	51.407	150
36	588269.495	575000.729	53.610	3.928	1200	1 1	1.003	49.682	150
						•			
						0	1.004	49.682	150
37	588198.363	574975.127	52.070	3.111	1200	1	1.004	48.959	150
						0 < 1			
							1 005	40.050	150
38	588188.347	574976.763	51.810	3.731	1200	0	1.005	48.959 48.079	150 150
30	300100.547	374370.703	31.010	3.731	1200		1.003	40.073	130
						0 < 1			
						0	1.006	48.079	150
39	588145.886	574962.362	50.934	4.804	1200	1	1.006	46.130	150
						0 ← 1			
						0	1.007	46.130	150
40	588055.897	574963.760	48.320	3.621	1200	1	1.007	44.699	150
						0 ← ← 1			
41	E99000 901	E74062 E60	46 622	3.414	1200	1 1	1.008 4.004	44.699 44.972	150 150
41	588009.891	574963.569	40.022	3.414	1200	2	1.008	43.208	150
						0 ← 2	1.000	131233	130
						0	1.009	43.208	150
42	587981.228	574959.274	45.000	2.001	1200	1	1.009	42.999	150
						0 ← 1			
						0	1.010	42.999	150
43	587907.335	574948.201	40.698	1.650	1200	1	1.010	39.048	150
-		- ·-·							
						Y			
45	F0700F 705	F74000 400	25.225	4.655	4222	, O	1.011	39.048	150
45	587905.722	574909.488	35.390	1.650	1200		1.012	33.740	150
						0	1.013	33.740	150

File: Broomfield Midleton-RFI.; Network: Foul Network 2 George Forde 26/02/2024 Page 6 Residential Development Broomfield, Midleton, Co. Cork

Manhole Schedule

Node	Easting	Northing	CL	Depth	Dia	Connections	Link	IL	Dia
	(m)	(m)	(m)	(m)	(mm)			(m)	(mm)
46	587927.735	574902.802	35.570	4.795	1200	1	7.000	30.775	150
						2 2	1.013	33.586	150
						0 0 0	1.014	30.775	150
47	587924.098	574867.616	33.460	3.456	1200	2 1	8.000	30.627	100
						0 ~ 2	1.014	30.004	150
						0	1.015	30.004	150
48	587900.895	574870.722	31.817	2.996	1200	1	1.015	28.821	150
						0	1.016	28.821	150
49	587885.297	574865.858	30.400	1.688	1200	1	1.016	28.712	150
						0-1			
57	588184.966	575041.663	56.557	2.332	1200				
						→ 0			
						0	3.000	54.225	150
50	588093.554	575049.311	61.464	3.123	1200	0 ←			
						0	5.000	58.341	150
51	588026.590	575051.505	59.450	3.603	1200	1	5.000	55.847	150
31	300020.330	373031.303	33.130	3.003	1200	<u></u>			
	500001 500				1000	, O	5.001	55.847	150
52	588021.688	575031.630	52.380	2.394	1200	1 1	5.002	49.986	150
						2	4.002	50.730	150
<u> </u>	500045 764	F75000 20C	F4 200	2 257	1200	0 0	4.003	49.986	150
53	588015.761	575000.296	51.280	2.357	1200		4.003	48.923	150
						, O	4.004	48.923	150
54	588176.393	575047.609	56.360	1.907	1200	٥			
						0	4.000	54.453	150
55	588132.695	575031.184	55.430	1.742	1200	0 ← 1	4.000	53.688	150
						0	4.001	53.688	150
56	588082.529	575030.751	53.776	1.650	1200	1	4.001	52.126	150
	300002.323	3.3030.731	33.770	2.000	1200	0		52.120	130
						0	4.002	52.126	150
61	588244.478	575093.068	59.380	2.897	1200				
						0	2.000	56.483	150

Brian O'Kennedy and Associate File: Broomfield Midleton-RFI.; Shannon House Church Road Douglas, Cork

Network: Foul Network 2 George Forde 26/02/2024

Page 7 Residential Development Broomfield, Midleton, Co. Cork

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	Link	IL (m)	Dia (mm)
58	587996.500	574927.799	42.000	2.682	1200				
						0 ←			
						0	6.000	39.318	150
60	587997.547	574877.404	36.330	3.850	1200				
						0←			
						0	8.000	32.480	100
59	587995.825	574911.002	39.120	4.608	1200				
						0←			
						0	7.000	34.512	150
44	587906.026	574916.774	37.153	1.650	1200	² 1	6.000	35.503	150
						2	1.011	35.503	150
							1.012	35.503	150
63	588024.641	575040.481	56.473	6.301	1200	1 1	5.001	55.623	150
						$ \phi $			
						0	5.002	50.172	150

Simulation Settings

Analysis Speed	Normal	Drain Down Time (mins)	240
Skip Steady State	\checkmark	Foul Event Duration (mins)	60

Storm Durations

15	30	60	120	180	240	360	480	600	720	960	1440

Pre-development Discharge Rate

Site Makeup Greenfield Method Positively Drained Area (ha) SAAR (mm) Soil Index SPR	Greenfield IH124 7.950 1091 2 0.30	Growth Factor 30 year Growth Factor 100 year Betterment (%) QBar Q 1 year (I/s) Q 30 year (I/s)	1.65 1.96 0 24.4 20.2 40.2
SPR	0.30	Q 30 year (I/s)	40.2
Region	11	Q 100 year (I/s)	47.7
Growth Factor 1 year	0.83		

Pre-development Discharge Volume

Site Makeup	Greenfield	Return Period (years)	100
Greenfield Method	FSR/FEH	Climate Change (%)	0
Positively Drained Area (ha)	7.950	Storm Duration (mins)	360
Soil Index	2	Betterment (%)	0
SPR	0.30	PR	0.341
CWI	125.228	Runoff Volume (m³)	1702

Brian O'Kennedy and Associate Shannon House Church Road File: Broomfield Midleton-RFI.; Network: Foul Network 2 George Forde 26/02/2024 Page 8
Residential Development
Broomfield,
Midleton, Co. Cork

Results for Foul Event Critical Storm Duration. Lowest mass balance: 87.37%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
Foul Event	32	1	58.391	0.000	0.0	0.0000	0.0000	OK
Foul Event	33	1	58.065	0.000	0.0	0.0000	0.0000	OK
Foul Event	34	35	56.028	0.006	0.1	0.0063	0.0000	OK
Foul Event	35	10	51.417	0.010	0.2	0.0111	0.0000	OK
Foul Event	36	59	49.695	0.013	0.2	0.0147	0.0000	OK
Foul Event	37	59	48.968	0.009	0.3	0.0100	0.0000	OK
Foul Event	38	59	48.090	0.010	0.3	0.0118	0.0000	OK
Foul Event	39	60	46.143	0.013	0.3	0.0150	0.0000	OK
Foul Event	40	59	44.711	0.013	0.4	0.0144	0.0000	OK
Foul Event	41	60	43.229	0.022	0.5	0.0246	0.0000	OK
Foul Event	42	61	43.012	0.013	0.5	0.0145	0.0000	OK
Foul Event	43	59	39.060	0.012	0.6	0.0133	0.0000	OK
Foul Event	45	60	33.764	0.024	0.7	0.0277	0.0000	OK
Foul Event	46	59	30.795	0.020	0.8	0.0226	0.0000	OK
Foul Event	47	59	30.021	0.017	0.9	0.0190	0.0000	OK
Foul Event	48	61	29.438	0.617	0.9	0.6975	0.0000	SURCHARGED
Foul Event	49	61	29.438	0.726	0.5	0.8208	0.0000	OK
Foul Event	57	1	54.225	0.000	0.0	0.0000	0.0000	OK
Foul Event	50	1	58.341	0.000	0.0	0.0000	0.0000	OK
Foul Event	51	37	55.855	0.007	0.1	0.0085	0.0000	OK
Foul Event	52	12	49.993	0.007	0.1	0.0080	0.0000	OK
Foul Event	53	48	48.928	0.005	0.1	0.0058	0.0000	OK
Foul Event	54	1	54.453	0.000	0.0	0.0000	0.0000	OK
Foul Event	55	1	53.688	0.000	0.0	0.0000	0.0000	OK
Foul Event	56	1	52.126	0.000	0.0	0.0000	0.0000	OK

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
Foul Event	32	1.000	33	0.0	0.000	0.000	0.0000	
Foul Event	33	1.001	34	0.0	0.000	0.000	0.0083	
Foul Event	34	1.002	35	0.1	0.497	0.002	0.0058	
Foul Event	35	1.003	36	0.2	0.503	0.008	0.0395	
Foul Event	36	1.004	37	0.2	0.359	0.013	0.0434	
Foul Event	37	1.005	38	0.3	0.640	0.007	0.0048	
Foul Event	38	1.006	39	0.3	0.568	0.009	0.0287	
Foul Event	39	1.007	40	0.3	0.414	0.015	0.0659	
Foul Event	40	1.008	41	0.4	0.431	0.014	0.0525	
Foul Event	41	1.009	42	0.5	0.447	0.038	0.0331	
Foul Event	42	1.010	43	0.5	0.750	0.014	0.0505	
Foul Event	43	1.011	44	0.6	1.039	0.012	0.0182	
Foul Event	45	1.013	46	0.7	0.389	0.055	0.0414	
Foul Event	46	1.014	47	0.8	0.651	0.035	0.0435	
Foul Event	47	1.015	48	0.9	0.559	0.026	0.2186	
Foul Event	48	1.016	49	0.5	0.297	0.039	0.2876	0.0
Foul Event	57	3.000	35	0.0	0.000	0.000	0.0166	
Foul Event	50	5.000	51	0.0	0.000	0.000	0.0109	
Foul Event	51	5.001	63	0.1	0.310	0.005	0.0036	
Foul Event	52	4.003	53	0.1	0.481	0.004	0.0075	
Foul Event	53	4.004	41	0.1	0.564	0.002	0.0066	
Foul Event	54	4.000	55	0.0	0.000	0.000	0.0000	
Foul Event	55	4.001	56	0.0	0.000	0.000	0.0000	
Foul Event	56	4.002	52	0.0	0.000	0.000	0.0000	

File: Broomfield Midleton-RFI.; Network: Foul Network 2 George Forde 26/02/2024 Page 9 Residential Development Broomfield, Midleton, Co. Cork

Results for Foul Event Critical Storm Duration. Lowest mass balance: 87.37%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
Foul Event	61	1	56.483	0.000	0.0	0.0000	0.0000	OK
Foul Event	58	1	39.318	0.000	0.0	0.0000	0.0000	OK
Foul Event	60	1	32.480	0.000	0.0	0.0000	0.0000	OK
Foul Event	59	1	34.512	0.000	0.0	0.0000	0.0000	OK
Foul Event	44	59	35.513	0.010	0.7	0.0116	0.0000	OK
Foul Event	63	40	50 180	0 008	0.1	0.0086	0.0000	OK

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
Foul Event	61	2.000	34	0.0	0.000	0.000	0.0008	
Foul Event	58	6.000	44	0.0	0.000	0.000	0.0237	
Foul Event	60	8.000	47	0.0	0.000	0.000	0.0000	
Foul Event	59	7.000	46	0.0	0.000	0.000	0.0475	
Foul Event	44	1.012	45	0.7	0.895	0.009	0.0087	
Foul Event	63	5.002	52	0.1	0.381	0.005	0.0029	

Appendix G: Irish Water – Confirmation of Feasibility

Brian O'Kennedy

Shannon House Church Rd Douglas Cork T12 PW40

12 January 2023

Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

Irish Water PO Box 448, South City Delivery Office Cork City.

www.water.ie

Re: CDS21001664 pre-connection enquiry - Subject to contract | Contract denied Connection for Multi/Mixed Use Development of 272 unit(s) & creche at Broomfield East, Midleton, Cork

Dear Sir/Madam,

Irish Water has reviewed your pre-connection enquiry in relation to a Water & Wastewater connection at Broomfield East, Midleton, Cork (the **Premises**).

SERVICE	OUTCOME OF PRE-CONNECTION ENQUIRY THIS IS NOT A CONNECTION OFFER. YOU MUST APPLY FOR A CONNECTION(S) TO THE IRISH WATER NETWORK(S) IF YOU WISH TO PROCEED.	
Water Connection	Feasible without infrastructure upgrade by Irish Water	
Wastewater Connection	Feasible Subject to upgrades	
	SITE SPECIFIC COMMENTS	
Water Connection	As portions of the site are above the level of the adjoining Midleton WTP reservoir, pressure boosting on the watermains servicing the development will be required. Details of such to be agreed with Irish Water at connection application stage. Please note that there is a 12" watermain crossing the site south of the Midleton WTP. This may have to diverted depending on the site layout.	
Wastewater Connection	Wastewater Treatment: In order to accommodate your proposed connection, works are required to create additional capacity in the wastewater treatment system. Irish Water is currently progressing two projects to provide this additional wastewater treatment capacity. The first of these projects is due for completion in Q4 2023 (subject to change) and the proposed connection could be completed as soon as possibly practicable after this date.	

Wastewater Network:

Due to the volume of proposed discharge, localised upsizing of existing sewers may be required. The extent of this will be determined by site plans and discharge points. Details of such to be agreed with Irish Water at connection application stage.

The design and construction of the Water & Wastewater pipes and related infrastructure to be installed in this development shall comply with the Irish Water Connections and Developer Services Standard Details and Codes of Practice that are available on the Irish Water website. Irish Water reserves the right to supplement these requirements with Codes of Practice and these will be issued with the connection agreement.

The map included below outlines the current Irish Water infrastructure adjacent to your site:

Reproduced from the Ordnance Survey of Ireland by Permission of the Government. License No. 3-3-34

Whilst every care has been taken in its compilation Irish Water gives this information as to the position of its underground network as a general guide only on the strict understanding that it is based on the best available information provided by each Local Authority in Ireland to Irish Water. Irish Water can assume no responsibility for and give no guarantees, undertakings or warranties concerning the accuracy, completeness or up to date nature of the information provided and does not accept any liability whatsoever arising from any errors or omissions. This information should not be relied upon in the event of excavations or any other works being carried out in the vicinity of the Irish Water underground network. The onus is on the parties carrying out excavations or any other works to ensure the exact location of the Irish Water underground network is identified prior to excavations or any other works being carried out. Service connection pipes are not generally shown but their presence should be anticipated.

General Notes:

- The initial assessment referred to above is carried out taking into account water demand and wastewater discharge volumes and infrastructure details on the date of the assessment. The availability of capacity may change at any date after this assessment.
- 2) This feedback does not constitute a contract in whole or in part to provide a connection to any Irish Water infrastructure. All feasibility assessments are subject to the constraints of the Irish Water Capital Investment Plan.
- The feedback provided is subject to a Connection Agreement/contract being signed at a later date.
- 4) A Connection Agreement will be required to commencing the connection works associated with the enquiry this can be applied for at https://www.water.ie/connections/get-connected/
- 5) A Connection Agreement cannot be issued until all statutory approvals are successfully in place.
- 6) Irish Water Connection Policy/ Charges can be found at https://www.water.ie/connections/information/connection-charges/
- 7) Please note the Confirmation of Feasibility does not extend to your fire flow requirements.
- 8) Irish Water is not responsible for the management or disposal of storm water or ground waters. You are advised to contact the relevant Local Authority to discuss the management or disposal of proposed storm water or ground water discharges
- 9) To access Irish Water Maps email datarequests@water.ie
- 10) All works to the Irish Water infrastructure, including works in the Public Space, shall have to be carried out by Irish Water.

If you have any further questions, please contact Michael Galvin from the design team at mgalvin@water.ie For further information, visit **www.water.ie/connections.**

Yours sincerely,

Yvonne Harris

Gronne Hassis

Head of Customer Operations

Appendix H: SuDS Checklists

TABLE Detailed drainage design documentation suggested for submission at full planning

Ref	Requirements	Details (or referencedocumentation)	Accepted?
(a)	Where infiltration is proposed, an acceptable Infiltration Assessment has been submitted, including any geotechnical test results and evaluations	Infiltration Rate Testing was carried out in accordance with BRE365. See Appendix E, Engineering report, See section 5.11.2.1 for Filter Drain Assessment and design. See Section 5.11.3 for Permeable Paving Assessment and design.	
(b)	A scheme design assessment with appropriate supporting calculations that has been submitted that demonstrates design conformity with the required design criteria for the site; justification of any non-compliance to national or locally set standards	Full SuDS design has been carried out with reference to CCDP2022, Greater Dublin Strategic Drainage Study Vol2 and SuDS manual CIRIA Report C753. No non-compliance issues.	
(c)	Plans of the proposed drainage system, showing: drainage catchment and sub-catchment areas (including impermeable and permeable zones, and any phasing details) existing and proposed site sections and levels long- and cross-sections for the proposed drainage system (including exceedance flow management routes) and final building finished floor levels details for connections to watercourses and sewers maintenance access and any arisings storage and disposal arrangements operational characteristics of any mechanical features	Full details as listed. See the following: Drawing P.1303 – Existing Drainage System Sections. Drawings P.1321 & P.1322 – Proposed SW Layout. Drawing P.1324 – Existing Receiving S.W. System. Engineering Report – Appendix 'A' – S.W. Design Output. Appendix 'B' – S.W. Receiving Network CCTV. Appendix 'C' – S.W. Receiving Network Design.	
(d)	All necessary consents required for off-site works	No Off-Site Work	
(e)	Commitments for approval and adoption arrangements for all elements of the system (including exceedance flow management components); commitments to any cost contributions, valuation and security of any required non-performance bond	Compliance will be met in relation to any conditions or bonds specified as part of a grant of planning permission	
(f)	Appropriate consideration and management of any health and safety issues relating to SuDS implementation	SuDS recommendations in relation to safe design of measures have been met. E.g. max slope of swale side slopes.	
(g)	The design of each element undertaken in accordance with best practice (using detailed design checklists, where required)	See Drainage Impact Assessment Design, Section 5.0 of Engineering Report	
(h)	Specifications prepared and approved for all materials used in the design	All materials will be in accordance with appropriate/relevant EN Standards	

	A construction method statement for the proposed SuDS system submitted including: Construction Stage Requirement Only.	
(i)	 construction processes to protect the SuDS functionality (including the provision of any required temporary drainage systems) programming to protect the SuDS functionality landscape planting consideration of access for inspections by the approving or adopting organisation 	

continued from...

TABLE Table B.3 Detailed drainage design documentation suggested for submission at full planning B.3

	Ref	Requirements	Details (or reference documentation)	Accepted?
-	(j)	A Maintenance Plan for the proposed SuDS submitted including: a description of the system and how each part of the system is expected to work management objectives for the site inspection and maintenance schedules, material, tools and initial cost estimates maintenance access points, easements and outfalls	Construction Stage Requirement Only	
	(k)	An information and communications plan for the proposed SuDS scheme submitted, where appropriate, including: communication with and education of existing residents communication with and education of new residents site and SuDS component specific information boards local community education and education strategies (eg through schools). Note: this is only likely to be required on larger sites and may be provided by the drainage approving body or the developer (to be agreed between them)	Construction Stage Requirement Only	

TABLE Scheme design assessment checklist

Requirements						
Site ID	Castle Rock Homes Development Broomfield West Midleton Co Cork					
Site location and co-ordinates	Broomfield West, Midleton. ITM 188168E	Broomfield West, Midleton. ITM 188168E, 075044N				
Site description	Housing Development Site	Drawing reference(s) P-1101. P-1102, P-1103 Site Layout Plans				
Date of assessment	October 2023	Specification refer	ence			
Type of development	Domestic Housing & Creche	Site area			7.95На	
		SuDS manual section	Y	N	Summary of details	Comments/remedial actions
Water quantity						
Is surface water used as a resource	e, where appropriate?	3.2.2	√		Swale drainage to support natural flora/fauna	
justification for moving between lev infiltration to the maximum exte acceptable to do so discharge to surface waters discharge to surface water sew discharge to combined sewer (I	nt that is practical – where it is safe and	3.2.3		V	Substantial area of permeable paving incorporated. Attenuated green field rate run off to discharge to S.W. (river) via existing S.W. infrastructure. See Section 2.2 Eng Report	
	proposed, has evidence been provided greed with the sewerage undertaker and il has been agreed?		√		Connection to existing S.W. sewer proposed. See full design Section 2 Engineering Reports and Appendix 'A', Stormwater Sewer Design Output.	
Has runoff and flooding from all sou considered and taken into account		3.3.3	✓		See Section 5.0 Drainage Impact Assessment in Engineering Report	
first 5 mm of runoff from impermeat	(eg infiltration, green roofs, permeable	3.3.1 4.3.1	< <		See Engineering Report, Section 5.3 SuDS design criteria. Infiltration, permeable paving, vegetated surfaces (swales). See Section 5.0 Drawing Impact Assessment of Engineering report.	

TABLE Scheme design assessment checklist

Requirements			
Does the design demonstrate adequate control of the 1 year, critical duration site event?	3.2.3 3.3.2	V	See Appendix 'A' of Engineering Report Storm Network 1 and 2 Reports See design and simulation settings
Does the design demonstrate adequate control of the 100 year, critical duration site event (including urban creep and climate change allowances)?	3.2.3 3.2.7 3.3.2	~	See Appendix 'A' of Engineering Report Storm Network 1 and 2 Reports See design and simulation settings
Does the design demonstrate adequate control of the 100 year, 6 hour runoff volume from the site? Are any natural hydrological features on the site adequately protected by	3.2.3 3.3.1	√	See Appendix 'A' of Engineering Report Storm Network 1 and 2 Reports See design and simulation settings No natural hydrological features
the design? Are all SuDS components outside any areas of significant flood risk? If not, provide justification and evidence that the risks to system performance are acceptable	3.2.4	√	Exceedance floor/flood areas highlighted in Engineering Report Section 6.10. Pluvial exceedance. All SuDs features lie outside these areas.
Is pumping a requirement for the operation of the system? If yes, have all other possible alternatives been considered appropriately?	3.2.5		No pumping required – all gravity sewers.
Have infiltration rates, hydraulic gradients and any downstream constraints been evaluated to ensure that the components will drain down within a suitable timescale?	3.2.5	~	Greenfield runoff calculated – See Appendix 'D' of Engineering report. Attenuation design calculated to suit - See Appendix 'A of Engineering Report. S.W. receiving network design confirmed – See Appendix 'B' of Engineering Report.
Are flows up to the agreed standard of service event (including allowances for urban creep and climate change) fully conveyed within the drainage system?	3.2.6 3.2.7 3.3.3	~	10% and 20% climate change simulations used for S.S. drainage design as per SuDS design criteria and as per Table 11.4 of Cork Co Co Development Plan.
Are flows up to the agreed exceedance standard of service event (including allowances for urban creep and climate change) contained or stored on site within safe exceedance storage areas and flow paths? Are these areas and flow paths protected from future development?	3.2.6 3.2.7 3.3.3	√	See Engineering Report section 6.0 – Flood Risk Assessment for exceedance flow paths and management. Future development will not be possible at these areas.
Water quality			
Does the design include an appropriate treatment strategy to ensure that: sediment is trapped and retained on site in accessible and maintainable areas? suitable SuDS components have been provided in series before discharge that provide acceptable treatment, taking account of proposed site land use and the status of all receiving water bodies?	4.2.2 4.3.2	· ·	No runoff for small (< 5mm) events. All S.W. gullies fitted with silt traps. Swales will provide filtration of S.W. Filter drains incorporate filter membrane with sacrificial top layer. Permeable paving will provide for filtration of sediment filter.

continued from...

TABLE Scheme design assessment checklist

Has consideration been given to the potential implications of climate change on the capability of the SuDS components to provide the required treatment?	4.2.3	✓	Climate change predications of 10% and 20% used for S.W. design, see Appendix 'A' of Engineering Report.
Requirements			
Amenity criteria			
Where the drainage system serves more than one property, is public space used and integrated with the drainage system in an appropriate and beneficial way?	5.2.2	✓	Swales and filter drains are incorporated into open aeras. Permeable paving to common courtyard areas. Total 1950sqm
Does the proposed scheme enhance the visual character of the development?	5.2.3	✓	Planted swales provide green corridors.
Are the proposed components safe for any proposed amenity use? Has a health and safety risk assessment been undertaken?	5.2.4 Chapter 36 Checklist B.3	✓	Swale incorporated into green areas. Side slopes design in accordance with SuDS suggestion. H&S risk to be assessed prior to construction stage.
Have opportunities been taken to use the drainage system to enhance development resilience to future climate change scenarios?	5.2.5	✓	Future climate change scenarios have been modelled into the S.W. design system.
Is the structure and function of the drainage system clear and obvious to the local community?	5.2.6		To be assessed at construction stage
Do the design proposals include sufficient provision for community engagement and awareness raising?	5.2.7		To be assessed at construction stage
Biodiversity criteria			
Will the drainage system support and protect natural local habitats and species?	6.2.1	~	See Landscape Report Masterplan Drawing L206 notes.
Will the drainage system contribute to the delivery of local biodiversity objectives?	6.2.2	✓	See Landscape Report Masterplan Drawing L206 notes.
Does the design support local (and wider where possible) habitat connectivity?	6.2.3		Habitat connectivity to be considered in conjunction with further development of adjoining launch.
Does the design promote the creation of diverse, self-sustaining and resilient ecosystems?	6.2.4	✓	See Landscape Report Green Infrastructure Drawing L202
Constructability			

Has an acceptable construction method statement been submitted and approved?	Chapter 31		Construction materials are non- technical and incorporate standard build techniques. Details	
			construction method statements to	
			be considered at construction	
			stage.	

TABLE Scheme design assessment checklist

Maintainability			
Are the design features sufficiently durable to ensure structural integrity over the system design life, with reasonable maintenance requirements?	Chapter 32	√	Permeable system to be fully Constructed in accordance with manufacturers proprietary system. Swales have suitable side slopes, falls and planting.
Requirements			
Are the operating and maintenance requirements of the drainage system adequately defined?	Chapter 32	√	Design of elements has incorporated design measures as outlined on SuDS manual Circa report C753 and Greater Dublin Strategic Drainage Study Vol2. Detailed assessment at construction stage.
Has an acceptable Maintenance Plan been submitted and approved?	Chapter 32		To be assessed at construction stage.
Cost-effectiveness			
Is operation and maintenance achievable at an acceptable cost to the adopting body (including any pumping requirements)?	Chapter 35	√	
Safety			
Are the proposed components safe to construct, maintain and operate? Has a health and safety risk assessment been undertaken?	Chapter 36 Checklist B.3	√	Component design has had regard for H&S and incorporated design manual layout. Detailed H&S risk assessment to be carried out at Construction Stage.

System design acceptability	Summary details including any changes required	Acceptable (Y/N)	Date changes made
Acceptable:			
Minor changes required:			
Major changes required/redesign:			